ELECTRICITY AND MAGNETISM (PHYS 231)

Lecture 11: Current, Resistance, & Electromotive Force

Sep 23, 2024

1

Dynamics of Charging

Water Flow v.s. Electric Current

Beyond the Electrostatic Limit

Free electrons move randomly inside an electrostatic conductor (vanishing internal electric field).

Random motions of electrons do not generate any net flow of charge in any direction (no current).

However, if a constant, steady electric field \vec{E} is established inside a conductor…

Electrons start to "drift" as a whole with a drift velocity \vec{v}_d (finite current).

Electric Current

- Electric current I has a direction.
- If the moving charges are **positive**, directions of current & charges are the **SAME.**
- If the moving charges are **negative**, direction of current & charges are the **OPPOSITE**.

The direction of I aligns with that of the internal electric field \vec{F} .

Electric Current is the NET amount of charge passing through a given area per unit time.

For example, if a net charge dQ flows through an area in a time dt , the current *I* through the area

$$
I = \frac{dQ}{dt}
$$

5

Electric Current

Electric Current is the NET amount of charge passing through a given area per unit time.

For example, if a net charge dQ flows through an area in a time dt , the current *I* through the area

$$
I = \frac{dQ}{dt}
$$

Unit of current is 1 *Ampere* = 1 *Coulomb*/1 *second*

$$
A=\frac{c}{s}
$$

André-Marie Ampère (1775 - 1836)

Current *I* is **NOT** a vector!

Microscopic Expression of

Suppose there are n moving charged particles per unit volume passing through a conductor with a cross section area A. The drift velocities of the charges are assumed to be the same with magnitude v_d . Calculate the current.

 $dQ = |q| (nAv_d dt)$

 dQ is the total charge inside the volume $v_d dt$

$$
I = \frac{dQ}{dt} = |q| nAv_d
$$

Current Density (the current per cross-sectional area)

$$
\left(\qquad J = \frac{I}{A} = |q| n v_d \qquad \qquad \right) \quad \text{In unit of } A/m^2
$$

Promote *J* **to a vector**

The direction of \vec{J} is determined by the sign of the charges and the drift velocity, and is independent of whether we are using the positive or negative charges as the current carrier.

Drift Velocity Revisited

in the direction opposite to \vec{E} .

Why don't charges keep accelerating forever?

In real conductors, the charged particle will experience frequent collisions, into random directions, with the atoms compromising the material.

A balance is reached and the net overall motion becomes steady (i.e. all electrons reach the drift velocity v_d).

Just like running down a busy street

Resistivity

The overall collisions balance out the acceleration by the electric field. This effect is called the **resistivity** of the material.

In practice, the resistivity is quantified by

$$
\rho = \frac{\vec{E}}{\vec{j}} = \frac{E}{J} \qquad \Omega \cdot m
$$

The unit of
$$
\rho
$$
 is $\frac{\left(\frac{V}{m}\right)}{\left(\frac{A}{m^2}\right)} = \left(\frac{V}{A}\right) \cdot m$

A new unit ohm (or Ω) is defined to be $1\Omega = V/A$.

The reciprocal of ρ is called "conductivity", usually denoted as σ .

For a given temperature, if ρ of a material does NOT depend on E , then this material is called "ohmic". Otherwise, it is nonohmic. 10

Conductors, Insulators, & Semiconductors

TABLE 25.1 Resistivities at Room Temperature (20°C)

- A perfect conductor has $\rho = 0$.
- A perfect insulator has $\rho = \infty$.

Resistivity is a measure of the capability for electrons to move within a certain material.

Temperature Dependence of

Temperature dependence of ρ for metals

Resistance (*)

Assume the length of a conducting wire is L , then the potential difference across the wire is

$$
V = EL
$$

Since we also have

$$
J = \frac{E}{\rho}, \qquad J = \frac{I}{A}
$$

$$
V = EL = \rho J L = \frac{\rho L}{A} I
$$

Resistance & Ohm's Law (*)

- The resistance is proportional to the length L of the material and inversely proportional to the cross section area A .
- The unit for resistance is Ohm (Ω) .
- Resistivity ρ is an intrinsic property of a certain type of material (copper, steel, water,...). It does NOT depend on the geometry of the object.
- Resistance R is a property of a specific object (e.g. a given piece of wire with certain geometry dimensions). It does depend on the geometry.
- Apparently, $R(T) = R_0[1 + \alpha (T T_0)]$

Two cylindrical resistors, R₁ and R₂, are made of identical material. R_2 has *twice the length* of R_1 but *half the radius of R₁. These resistors are then* connected to a battery *V* as shown:

What is the relation between *I*₁, the current flowing in R_1 , and I_2 , the current flowing in R_2 ?

> The resistivity of both resistors is the same (*r*). Therefore the resistances are related as:

$$
R_2 = \rho \frac{L_2}{A_2} = \rho \frac{2L_1}{(A_1/4)} = 8\rho \frac{L_1}{A_1} = 8R_1
$$

The resistors have the same voltage across them; therefore

$$
I_2 = \frac{V}{R_2} = \frac{V}{8R_1} = \frac{1}{8}I_1
$$