
ELECTRICITY AND MAGNETISM (PHYS 231)

Lecture 10: Capacitance & Dielectrics

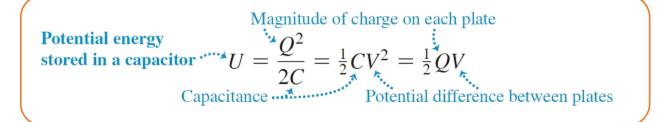
Sep 18, 2024

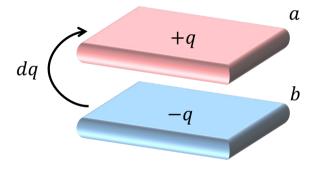
Capacitors

λ

Energy Storage in Capacitors

Potential energy U of a charged capacitor = the work W required to charge it

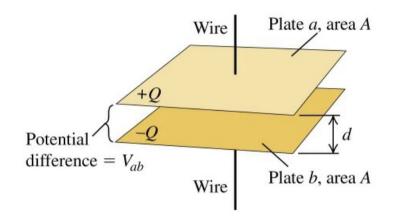

Starting from a capacitor C with charge q and voltage v, we have C = q/v.


Consider adding dq charge to the capacitor (i.e. bring dq from b to a), then the work done during this process is

$$dW = vdq = \frac{qdq}{C}$$

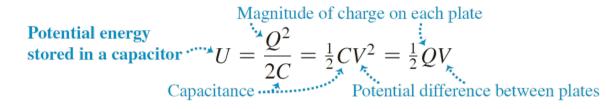
If we charge the capacitor from zero charge to Q, the total work is

$$W = \int_0^W dW = \int_0^Q \frac{qdq}{C} = \frac{Q^2}{2C}$$


Three equivalent expressions for U. Pick one that fits the problem better.

Parallel Plate Capacitors

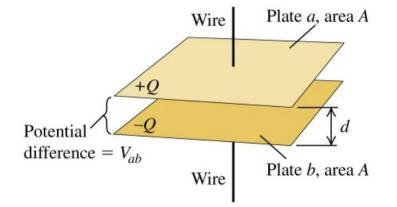
$$U = \frac{1}{2}CV^2 = \frac{1}{2}\left(\frac{\varepsilon_0 A}{d}\right)(Ed)^2 = \frac{Ad\varepsilon_0 E^2}{2}$$


Ad is the volume of space sandwiched between the plates.

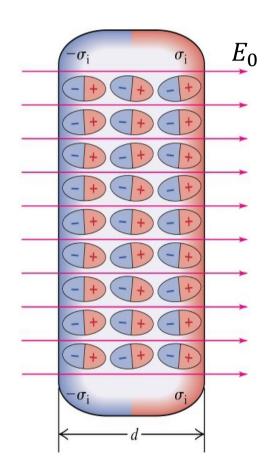
Electric energy density in a vacuum
$$u = \frac{U}{volume} = \frac{1}{2}\varepsilon_0 E^2$$

- The above expression holds for any electric field configuration in vacuum.
- Electric field by itself has energy.
- This is the same electric potential energy we have met before.

How to Enhance Capacitance?

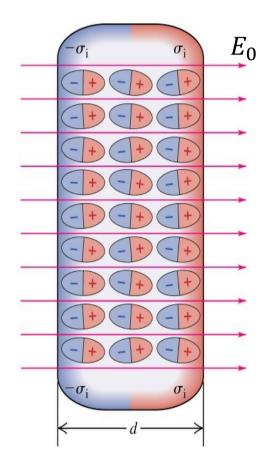


For a fixed voltage *V*, a larger *C* means a greater energy storage.


For parallel plate capacitors, how to enhance $C = \epsilon_0 A/d$?

- 1. Increase area *A*;
- 2. Reduce distance *d*;
- 3. Insert dielectric materials.

In principle, all insulators are dielectric materials... But we want the good ones!


Insulators Revisited

- 1. Electrons inside an insulator cannot move freely.
- 2. When applying an electric field E_0 , atoms in insulators will be polarized. Namely, a local separation between the electron & the ion will be created.
- 3. Polarized atoms act as small dipoles, creating local electric field opposite to the external electric field.
- 4. Electric field *E* inside an insulator is always smaller than E_0 .
- 5. The ratio K between E_0 and E is the **dielectric constant** of the insulator.

$$K = \frac{E_0}{E}$$

Insulators Revisited

$$K = \frac{E_0}{E} \ge 1$$

Dielectric Constant

Remarks

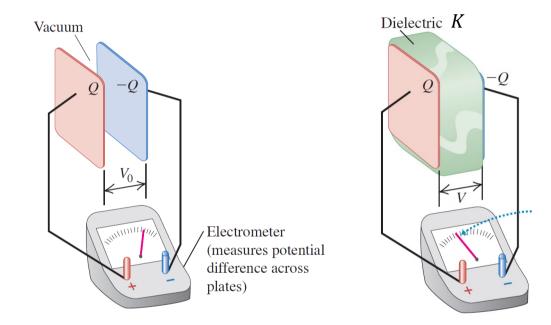
- 1. Dielectric constant is an intrinsic property of material. It tells us how much an external electric field is reduced inside the material compared with vacuum.
- 2. Vacuum has K = 1.
- 3. General insulators has K > 1.
- 4. Conductors can be viewed as a very special "insulator" with $K = \infty$. Why?

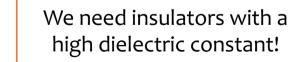
Electric field inside an electrostatic conductor is zero everywhere.

How does Dielectric Material Help Us?

Vacuum:

$$C_0 = \frac{Q}{V_0}$$


Dielectric material:


$$E = E_0/K \rightarrow V = V_0/K$$

$$C = \frac{Q}{V_0} = K \frac{Q}{V_0} = K C_0$$

 $C = KC_0$

Inserting dielectric material with a dielectric constant of *K* will increase the capacitance by a factor of K!

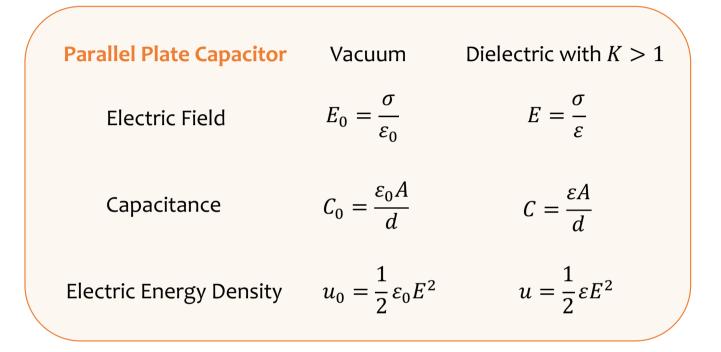
8

How does Dielectric Material Help Us?

Material	٤ _r
Vacuum	1 (by definition)
Air	1.000 589 86 ± 0.000 000 50 (at STP, for 0.9 MHz), ^[1]
PTFE/Teflon	2.1
Polyethylene/XLPE	2.25
Polyimide	3.4
Polypropylene	2.2–2.36
Polystyrene	2.4–2.7
Carbon disulfide	2.6
Mylar	3.1 ^[2]
Paper	3.85
Electroactive polymers	2–12
Mica	3-6 ^[2]
Silicon dioxide	3.9 ^[3]
Sapphire	8.9–11.1 (anisotropic) ^[4]
Concrete	4.5
Pyrex (Glass)	4.7 (3.7–10)
Neoprene	6 .7 ^[2]
Rubber	7
Diamond	5.5–10
Salt	3–15

Graphite	10–15
Silicon	11.68
Silicon nitride	7-8 (polycrystalline, 1MHz) ^{[5][6]}
Ammonia	26, 22, 20, 17
	(-80, -40, 0, 20 °C)
Methanol	30
Ethylene glycol	37
Furfural	42.0
Glycerol	41.2, 47, 42.5
	(0, 20, 25 °C)
Water	88, 80.1, 55.3, 34.5
	(0, 20, 100, 200 °C)
	for visible light: 1.77
Hydrofluoric acid	83.6 (0 °C)
Formamide	84.0 (20 °C)
Sulfuric acid	84–100
	(20–25 °C)
Hydrogen peroxide	128 <mark>aq</mark> –60
	(−30–25 °C)
Hydrocyanic acid	158.0–2.3
	(0–21 °C)
Titanium dioxide	86–173
Strontium titanate	310

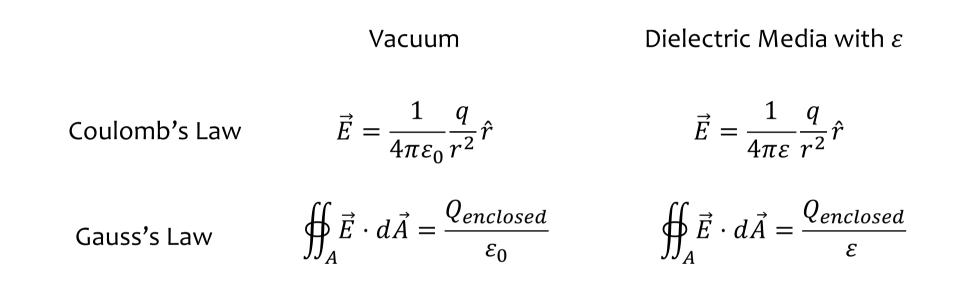
High dielectric constant: K > 7


Low dielectric constant:

K < 3.9

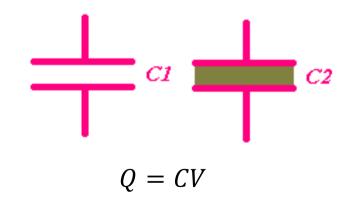
Calcium copper titanate (CaCu3Ti4O12): *K*~10,000

Permittivity


Permittivity: $\epsilon = K\epsilon_0$

When inside a material, we simply replace ε_0 with ε for all the quantities and laws/principles that originally involve ε_0 .

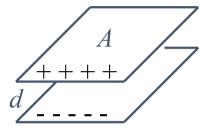
10


Coulomb's & Gauss's Laws inside a Dielectric Media

When inside a material, we simply replace ε_0 with ε for all the quantities and laws/principles that originally involve ε_0 .

Two identical parallel plate capacitors are carrying the same amount of charge Q and remain disconnected from any battery. Then C_2 is filled with an insulator with K > 1. Compare the voltages of the two capacitors. Which one is correct?

- ✓A. V1 > V2
 - B. V1 = V2
 - C. V1 < V2
 - D. Not enough information

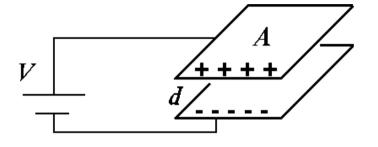

Example #1

A capacitor is charged to Q and then the battery is disconnected. Now we pull the plates further apart so that the final separation is $d_1 > d$

Which of the quantities Q, C, V, U, E change?

Q: Charge on the capacitor does not change.

- **C**: Capacitance decreases.
- V: Voltage increases.
- U: Potential energy increases.
- **E:** Electric field does not change.


$$C = \epsilon \frac{A}{d} \qquad V = \frac{Q}{C}$$
$$U = \frac{1}{2}QV \qquad E = \frac{\sigma}{\varepsilon}$$

Example #2

A capacitor is kept connected to a battery V. Now we pull the plates further apart so that the final separation is $d_1 > d$

Which of the quantities Q, C, V, U, E change?

- **Q**: Charge decreases.
- **C**: Capacitance decreases.
- V: Voltage does not change.
- U: Potential energy decreases.
- E: Electric field decreases.

$$C = \epsilon \frac{A}{d} \qquad V = \frac{Q}{C}$$
$$U = \frac{1}{2}QV \qquad E = \frac{\sigma}{\varepsilon}$$