ELECTRICITY AND MAGNETISM (PHYS 231)

Lecture 8: Capacitance & Dielectrics

Sep 16, 2024

What is a Capacitor

- o A capacitor is a device that stores electric potential energy and electric charge.
- o Any two conductors separated by an insulator (or vacuum) form a capacitor.
- \circ Capacitors are charge neutral as a whole. When charges get transferred from one conductor to another, we are charging the capacitor.
- \circ When we say that a capacitor has charge Q, or that a charge Q is stored on the capacitor, we mean that one conductor has charge +Q and the other has charge –Q. As a third example, lett α spin a spherical capacitor α spherical capacitor which consists of two consists of two concentrical capacitor α \circ . When we say that a capacitor has charge Q, or that a cha

Parallel-plate Capacitor **b. Thells of radii and** *a* **Spherical Capacitor** Cylindrical Capacitor (b) Gaussian surface for calculating the electric field.

Gaussian surface $+O$ \overline{a} $-Q$

Cylindrical Capacitor

2

Application of Capacitors

Energy Storage

Sensing

Signal Processing

……

Flash Photography

Condenser Microphone

DRAM

Capacitance

When charging a capacitor

1) Conductors get oppositely charged.

2) Conductors now have a potential difference

$$
V_{ab} = V_a - V_b
$$

3) As Q increases, V_{ab} increases proportionally and vice versa.

(e.g. if V_{ab} doubles, Q doubles as well.)

.... Magnitude of charge on each conductor Q
Vab^{**} conductors (*a* has charge +*Q* Capacitance of a capacitor conductors (*a* has charge $+Q$, b has charge $-Q$)

Capacitance is a measure of the ability of a capacitor to store charge/energy.

Capacitance

SI Unit of Capacitance is one Farad (1 F)

$1F = 1$ farad $= 1$ $C/V = 1$ coulomb/volt

- 1) If we charge a 1F capacitor with a battery of 1V, the charge stored in the capacitor will be 1C.
- 2) If we know the charge stored within a 1F capacitor is 1C, then the potential difference between the two charged conductors will be 1V.

Michael Faraday $(1791 - 1867)$

[We will talk about his law in a month…]

Magnitude

5

V Q $V_a - V$ $C = \frac{Q}{V}$ *Capacitance is always positive* $C = \left| \frac{Q}{V_a - V_b} \right| = \frac{Q}{\Delta}$ Magnitude

The two conductors a and b are insulated from each other, forming a capacitor with a capacitance of C. We double the charge on a to $+2Q$ and the charge on b to $-2Q$. As a result of this change, the capacitance of the two conductors will become

Recipe for Calculating Capacitance

Capacitance
$$
\dots \rightarrow C
$$

$$
= \frac{Q}{V_{ab}} \cdot \dots \cdot \text{Magnitude of charge on each conductor}
$$
 of a capacitor $V_{ab} \cdot \dots \cdot \text{Potential difference between}$ conductors *(a* has charge $+Q$, *b* has charge $-Q$)

Step 1 Find the charge Q stored in the capacitor

Step 2 Find the potential difference ΔV between two conductors **Step 3** Calculate $Q/\Delta V$

Parallel Plate Capacitor

→ → **d** ' ³ **E s**

 \rightarrow

Parallel Plate Capacitor

 $=\varepsilon_0$

 \overline{A}

 \boldsymbol{d}

Capacitance of a parallel plate capacitor in vacuum

Some Remarks

 $\mathcal{C}=$

 \overline{Q}

 ΔV

- 1) ΔV is, by definition, **ALWAYS** positive. If your calculation shows a negative ΔV , you probably encounter a sign error somewhere and will need to fix the sign of ΔV by taking its absolute value.
- **2) Capacitance is, by definition, ALWAYS positive**.
- **3) The capacitance only depends on the geometry of the capacitor, i.e.,** C **increases with area** A **and decreases** with the distance d .
- 4) The above formula is valid only if the two conductors are separated by vacuum.

→ → **d** ' ³ **E s**

intergration

 \rightarrow

Spherical Capacitor

1) Using Gauss's law & a spherical Gaussian surface, the electric field is found to be

$$
\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \hat{r}
$$

2) Calculate the voltage from r_a (positively charged sphere) to r_b (negatively charged sphere)

$$
\Delta V = \int_{r_a}^{r_b} \vec{E} \cdot d\vec{r} = \frac{Q}{4\pi\varepsilon_0} \int_{r_a}^{r_b} \frac{1}{r^2} = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b}\right)
$$

3) Calculate $C = Q/\Delta V$

$$
C = 4\pi\varepsilon_0 \frac{r_a r_b}{r_a - r_b}
$$

Inner shell, charge
$$
+Q
$$

Gaussian surface
Outer shell, charge $-Q$

Two concentric spherical conducting shells are separated by vacuum. The inner shell has total charge $+Q$ and outer radius r_a , and the outer shell has charge $-Q$ and inner radius r_h .

The capacitance only depends on the geometry of the capacitor.

Cylindrical Capacitor

See Example 24.4 in the textbook for details.

The capacitance only depends on the geometry of the capacitor.

Capacitors in the Real World

Symbol of capacitors in a circuit diagram is

Combining Capacitors

- o Capacitors are manufactured with certain standard capacitances and working voltages. However, these standard values may not be the ones we actually need in a particular application.
- \circ Combining standard capacitors to get an equivalent capacitor with our desired value.

Capacitors in Series Capacitors in Parallel

Capacitors in Series

Fact #1: The electric potential along an ideal conducting wire is the same everywhere unless it hits a capacitor/resistor/…

Fact #2: **Two capacitors in series will store the same amount** of charge Q when a voltage V_{ab} is applied.

Fact #3: $V_{ab} = V_{ac} + V_{cb}$ or $V = V_1 + V_2$

$$
V = V_1 + V_2 = \frac{Q}{C_1} + \frac{Q}{C_2} = Q\left(\frac{1}{C_1} + \frac{1}{C_2}\right) = \frac{Q}{C_{eq}}
$$

$$
C_{eq} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}}
$$
 or $\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$

Equivalent capacitance for two capacitors in series

Capacitors in Series

Equivalent capacitance for multiple capacitors in series

$$
\boxed{\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots = \sum_{i} \frac{1}{C_i}}
$$

 C_{eq} for capacitors in series is always **smaller** than each individual capacitor.

Capacitors in Parallel

Fact #1: The electric potential along an ideal conducting wire is the same everywhere unless it hits a capacitor/resistor/…

Fact #2: Two capacitors in parallel share the same voltage V_{ab} **.**

Fact #3: $V_{ab} = V = V_1 = V_2$

Fact #4: The charges stored in two parallel capacitors do NOT need to be the same.

The total charge stored in both capacitors is

$$
Q = Q_1 + Q_2 = C_1 V_1 + C_2 V_2 = (C_1 + C_2)V = C_{eq}V
$$
\n
$$
C_{eq} = C_1 + C_2
$$

 $C_{eq} = \sum C_i$ Equivalent capacitance for two capacitors in parallel multiple capacitors in parallel

$$
C_{eq} = C_1 + C_2
$$

Equivalent capacitance for

 C_{eq} for capacitors in parallel is always **larger** than each individual capacitor.

Example: Find C_{eq} **for the Capacitance Network**

Step 1 Decompose the network into "blocks" of capacitors

1) Blue block contains three capacitors in parallel 2) Red block contains two capacitors in series 3) Green block contains one capacitor

$$
C_{green} = C_1
$$
, $C_{blue} = C_3 + C_4 + C_5$, $C_{red} = \frac{1}{\frac{1}{C_2} + \frac{1}{C_6}}$

Example: Find C_{eq} **for the Capacitance Network**

