ELECTRICITY AND MAGNETISM (PHYS 231)

Lecture 6: Electric Potential energy

Sep 9, 2024 Homework #2 Due 11 pm Monday

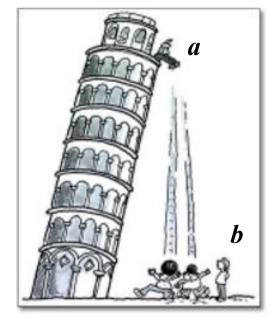
"Volt Tackle" of Pikachu

• Two kinds of energy: Kinetic Energy & Potential Energy.

$$K = \frac{1}{2}mv^2 \qquad \qquad U = U(\vec{r})$$

- Total Energy (K+U) is conserved.
- Energy is transferrable.
- Work is the energy difference or the amount of the transferred energy.
- When a force, F, acts on a particle, work is done on the particle in moving from point *a* to point *b*.

$$W_{a\to b} = \int_a^b \vec{F} \cdot d\vec{l}$$



 $K\uparrow,U\downarrow$

Energy, Work, & Potential Energy

 If the force is conservative, then the work done can be expressed in terms of a change in potential energy.

$$W_{a\to b} = U(\vec{r}_a) - U(\vec{r}_b) = -\Delta U$$

 $K(v_a) + U(\vec{r}_a) = K(v_b) + U(\vec{r}_b)$

Gravitational Force is a conservative force.

$$\vec{F}_{A\to B} = -G \, \frac{m_A m_B}{r^2} \hat{r}_{AB}$$

Electric Force is a conservative force.

$$\vec{F}_{1\to 2} = k \frac{q_1 q_2}{r^2} \hat{r}_{12}$$

A conservative force is a force with the property that the total work done in moving a particle between two points is **independent of the path taken**.

If we can define a potential energy for gravity, we can also doe the same for the electric force.

"Electric Potential Energy"

A Point Charge in a Uniform Electric Field

Electric force on charge is

$$\vec{F} = q_0 \vec{E} = -q_0 E \hat{y}$$

Work is done on the charge by electric field

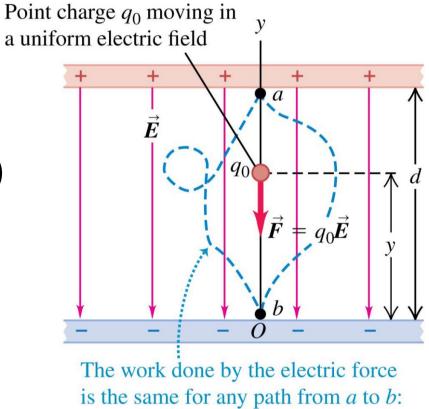
$$W_{a \to b} = \int_{a}^{b} \vec{F} \cdot d\vec{l} = -q_{0}E\int_{a}^{b} \hat{y} \cdot d\vec{l} = -q_{0}E(y_{b} - y_{a})$$

We define the electric potential energy $U(\vec{r})$ as a function of \vec{r} , s.t. it satisfies

$$W_{a\to b} = U(\vec{r}_a) - U(\vec{r}_b) = -\Delta U$$

Electric potential energy (\vec{r}_a)

Potential energy difference from \vec{r}_b to \vec{r}_a



 $W_{a \to b} = -\Delta U = q_0 E d$

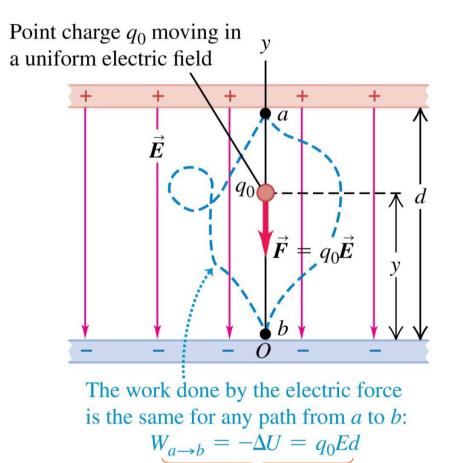
Electric force is conservative!

A Point Charge in a Uniform Electric Field

$$W_{a \to b} = U(\vec{r}_a) - U(\vec{r}_b) = -\Delta U$$
$$= q_0 E y_a - q_0 E y_b$$

Note that E > 0, $y_a > y_b$, 1) If $q_0 > 0$, we have $\Delta U < 0$. (lose U) 2) If $q_0 < 0$, we have $\Delta U > 0$. (gain U)

A positive (negative) test charge will lose (gain) electric potential energy if it moves *along* the field line.



Electric force is conservative!

A Point Charge in a Uniform Electric Field

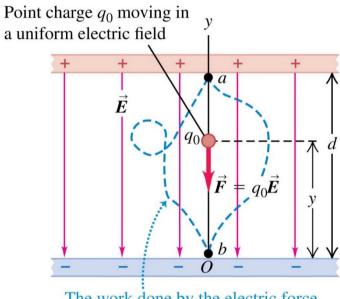
If no other force in play

$$K(v_{a})+U(\vec{r}_{a}) = K(v_{b})+U(\vec{r}_{b})$$
 (Energy conservation)

$$U(\vec{r}_{a})-U(\vec{r}_{b}) = K(v_{b})-K(v_{a}) = \frac{1}{2}mv^{2}_{b} - \frac{1}{2}mv^{2}_{a}$$
For $q_{0} > 0$, $W_{a \rightarrow b} = U_{a} - U_{b} = -\Delta U = K_{b} - K_{a} > 0$

$$U_{b} < U_{a}, K_{b} > K_{a}$$

- Electric force is doing a **positive** work ($W_{a \rightarrow b} > 0$)
- Electric potential energy decreases. $(U_b < U_a)$
- Kinetic energy increases $(K_b > K_a)$.
- Energy transfer from *U* to *K*, and thus remain **conserved** as a whole.

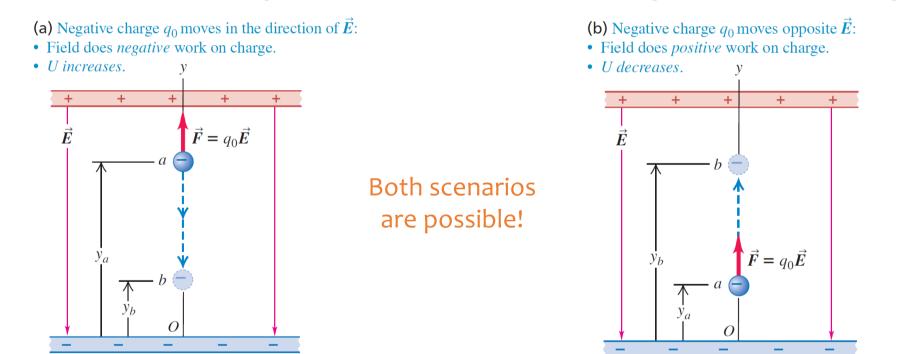


The work done by the electric force is the same for any path from *a* to *b*: $W_{a \rightarrow b} = -\Delta U = q_0 E d$

Q: A negative point charge moves from *a* to *b* with a **non-zero** initial velocity. Which of the following is true for electric potential energy U and kinetic energy K for the charge after arriving at b?

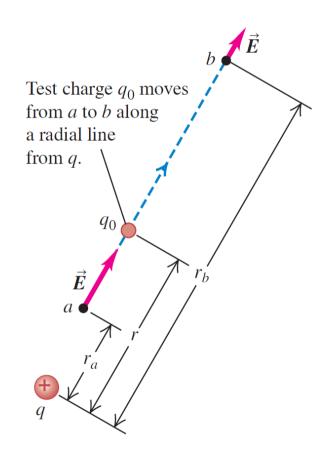
- A. U increases, K increases
- B. U decreases, K increases
- C. U increases, K decreases
- D. U decreases, K decreases
- E. Not enough information

Q: A negative point charge moves from a to b with a **non-zero** initial velocity. Which of the following is true for electric potential energy U and kinetic energy K?



Possible ONLY with a non-zero velocity

Possible with either a zero or a non-zero velocity



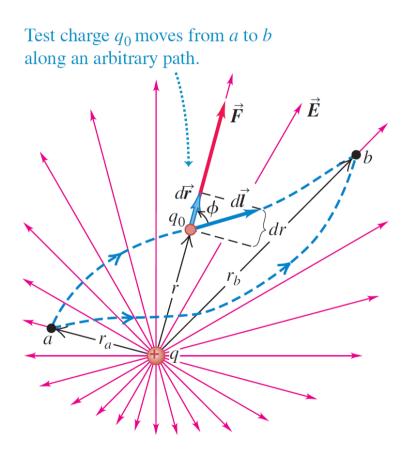
Q: Calculate the work done by the electric force by moving q_0 from \vec{r}_a to \vec{r}_b .

Step 1 Calculate the Coulomb force.

$$F = \frac{1}{4\pi\varepsilon_0} \frac{qq_0}{r^2} = q_0 \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} = q_0 E(r)$$

Step 2 Work is an integration of the force over the path.

$$W_{a \to b} = \int_{r_a}^{r_b} F_r dr = q_0 \int_{r_a}^{r_b} E(r) dr = q_0 \int_{r_a}^{r_b} \frac{1}{4\pi\varepsilon_0} \frac{qq_0}{r^2} dr$$
$$= \frac{qq_0}{4\pi\varepsilon_0} \int_{r_a}^{r_b} \frac{1}{r^2} dr = \frac{qq_0}{4\pi\varepsilon_0} \frac{-1}{r} \Big|_{r_a}^{r_b}$$

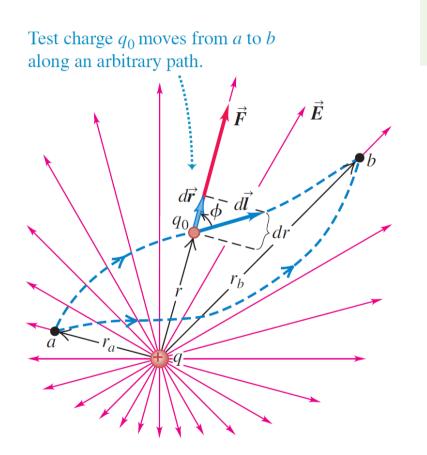


Q: Calculate the work done by the electric force by moving q_0 from \vec{r}_a to \vec{r}_b .

$$U(\vec{r}_a) - U(\vec{r}_b) = W_{a \to b} = \frac{qq_0}{4\pi\varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b}\right)$$

In the above calculation, we have assumed $\vec{r}_a \& \vec{r}_b$ are along the SAME radial direction.

What about a general displacement where a & b do NOT lie on the same radial line?



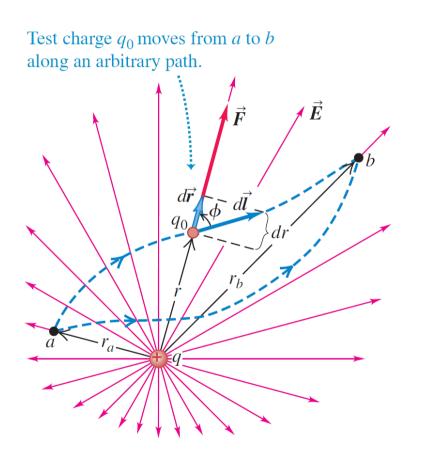
Q: Calculate the work done by the electric force by moving q_0 from \vec{r}_a to \vec{r}_b .

$$U(\vec{r}_a) - U(\vec{r}_b) = W_{a \to b} = \frac{qq_0}{4\pi\varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b}\right)$$

The above result holds even when a & b do NOT lie on the same radial line!

On Page 750 of the textbook, a mathematical proof is provided.

In the following, I will provide a "physical" proof.



$$U(\vec{r}_a) - U(\vec{r}_b) = W_{a \to b} = \frac{qq_0}{4\pi\varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b}\right)$$

Moving from a to b = Moving from a to ∞ + Moving from ∞ back to b

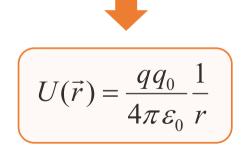
(Thanks to the conservative force...)

An arbitrary point and "Infinity" always lie along the same radial direction.

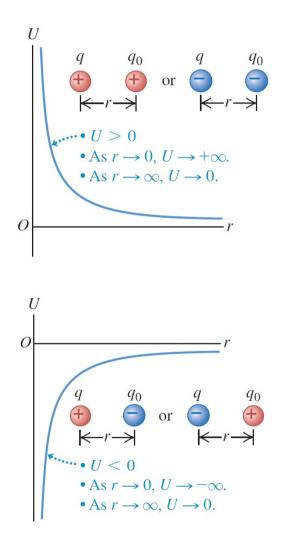
$$U(\vec{r}_a) - U(\infty) = \frac{qq_0}{4\pi\varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{\infty}\right) = \frac{qq_0}{4\pi\varepsilon_0} \frac{1}{r_a}$$
$$U(\vec{r}_b) - U(\infty) = \frac{qq_0}{4\pi\varepsilon_0} \left(\frac{1}{r_b} - \frac{1}{\infty}\right) = \frac{qq_0}{4\pi\varepsilon_0} \frac{1}{r_b}$$

$$U(\vec{r}_a) - U(\infty) = \frac{qq_0}{4\pi\varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{\infty}\right) = \frac{qq_0}{4\pi\varepsilon_0} \frac{1}{r_a}$$
$$U(\vec{r}_b) - U(\infty) = \frac{qq_0}{4\pi\varepsilon_0} \left(\frac{1}{r_b} - \frac{1}{\infty}\right) = \frac{qq_0}{4\pi\varepsilon_0} \frac{1}{r_b}$$

Why don't we define $U(\infty) = 0$ as a reference?



Definition of electric potential energy between two point charges.

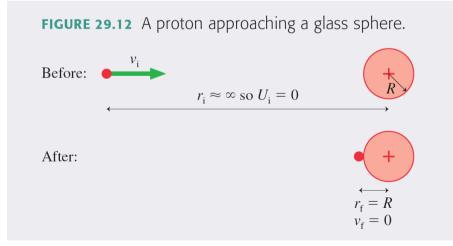


Example #1

EXAMPLE 29.2 Approaching a charged sphere

A proton is fired from far away at a 1.0-mm-diameter glass sphere that has been charged to +100 nC. What initial speed must the proton have to just reach the surface of the glass?

VISUALIZE FIGURE 29.12 shows the before-and-after pictorial representation. To "just reach" the glass sphere means that the proton comes to rest, $v_f = 0$, as it reaches $r_f = 0.50$ mm, the *radius* of the sphere.



How about kinetic energy?

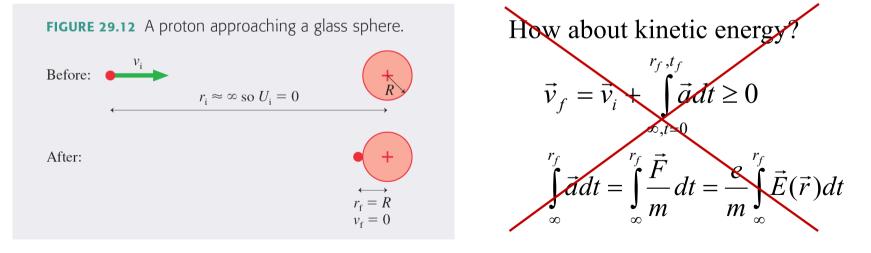
$$\vec{v}_f = \vec{v}_i + \int_{\infty,t=0}^{r_f,t_f} \vec{a}dt \ge 0$$
$$\int_{\infty}^{r_f} \vec{a}dt = \int_{\infty}^{r_f} \frac{\vec{F}}{m}dt = \frac{e}{m} \int_{\infty}^{r_f} \vec{E}(\vec{r})dt$$

Example #1

MODEL Energy is conserved. The glass sphere can be treated as a charged particle, so the potential energy is that of two point charges. The proton starts "far away," which we interpret as sufficiently far to make $U_i \approx 0$.

$$K(v_a) + U(\vec{r}_a) = K(v_b) + U(\vec{r}_b)$$

$$U(\vec{r}_a) - U(\vec{r}_b) = K(v_b) - K(v_a) = \frac{1}{2}mv_b^2 - \frac{1}{2}mv_a^2$$



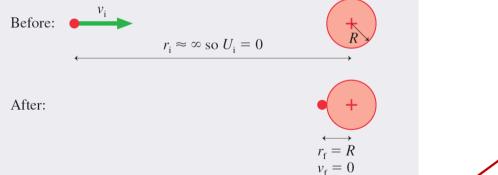
Example #1

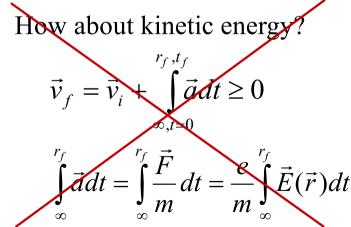
MODEL Energy is conserved. The glass sphere can be treated as a charged particle, so the potential energy is that of two point charges. The proton starts "far away," which we interpret as sufficiently far to make $U_i \approx 0$.

SOLVE Conservation of energy $K_{\rm f} + U_{\rm f} = K_{\rm i} + U_{\rm i}$ is

$$0 + \frac{Kq_{\rm p}q_{\rm sphere}}{r_{\rm f}} = \frac{1}{2}mv_{\rm i}^2 + 0$$

FIGURE 29.12 A proton approaching a glass sphere.





Multiple Point Charges: Two Different Potential Energies

The **potential energy associated with a test charge**
$$q_0$$
 due
to the electric field generated by other charges $q_1, q_2, q_3, ...$
$$U = \frac{q_0}{4\pi\epsilon_0} \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3} + \cdots \right) = \frac{q_0}{4\pi\epsilon_0} \sum_i \frac{q_i}{r_i}$$
Electric constant Distances from q_0 to $q_1, q_2, q_3, ...$

 r_1 r_2 q_3 r_3 q_2

 q_1

Meanwhile, q_1 , q_2 , q_3 , ... also have their own electric potential energies. We can thus define the concept of **total potential energy of a point-charge system** as

$$U_{tot} = \frac{1}{4\pi\epsilon_0} \sum_{i < j} \frac{q_i q_j}{r_{ij}}$$

Just Like Building a Pyramid

The potential energy associated with a test charge q_0

The effort of carrying a stone q_0 to the top of pyramid formed by q_1, q_2, q_3 ...

The total potential energy

Building a pyramid from the ground...

Multiple Point Charges

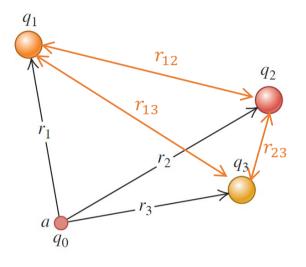
The potential energy for q_0 with respect to all three other charges is

$$U = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_0 q_i}{r_i} = \frac{q_0}{4\pi\varepsilon_0} (\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3})$$

The total potential energy for all **four** charges is

$$U_{tot} = \frac{1}{4\pi\varepsilon_0} \sum_{i < j} \frac{q_i q_j}{r_{ij}}$$

= $\frac{q_0}{4\pi\varepsilon_0} \left(\frac{q_1}{r_{01}} + \frac{q_2}{r_{02}} + \frac{q_3}{r_{03}}\right) + \frac{q_1}{4\pi\varepsilon_0} \left(\frac{q_2}{r_{12}} + \frac{q_3}{r_{23}}\right) + \frac{q_2 q_3}{4\pi\varepsilon_0 r_{23}}$

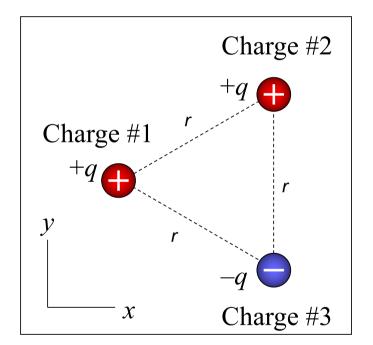


(We have denoted $r_{0i} \equiv r_i$ for short)

Be very careful about *which potential energy* the question is asking about!

Q3: If the three point charges shown here lie at the vertices of an equilateral triangle, the electric potential energy of charge #1 is

- A. Positive
- B. Negative
- 🖌 C. Zero
 - D. Not enough information



Q4: If the three point charges shown here lie at the vertices of an equilateral triangle, the total potential energy of all three charges is

- A. Positive
- B. Negative
 - C. Zero
 - D. Not enough information

