ELECTRICITY AND MAGNETISM (PHYS 231)

Lecture 6: Electric Potential energy

Sep 9, 2024 Homework #2 Due 11 pm Monday

"Volt Tackle" of Pikachu

o Two kinds of energy: **Kinetic** Energy & **Potential** Energy.

$$
K = \frac{1}{2}mv^2 \qquad \qquad U = U(\vec{r})
$$

- o Total Energy (K+U) is **conserved**.
- o Energy is transferrable.
- o **Work** is the energy difference or the amount of the transferred energy.
- o When a force, F, acts on a particle, work is done on the particle in moving from point *a* to point *b.*

$$
W_{a\rightarrow b}=\int_{a}^{b}\vec{F}\cdot d\vec{l}
$$

 $K \uparrow, U \downarrow$

Energy, Work, & Potential Energy

o If the force is **conservative**, then the work done can be expressed in terms of *a change in potential energy.*

$$
W_{a\rightarrow b} = U(\vec{r}_a) - U(\vec{r}_b) = -\Delta U
$$

 $K(v_a) + U(\vec{r_a}) = K(v_b) + U(\vec{r_b})$

Gravitational Force is a conservative force.

$$
\vec{F}_{A\rightarrow B} = -G \frac{m_A m_B}{r^2} \hat{r}_{AB}
$$

Electric Force is a conservative force.

$$
\vec{F}_{1\to 2} = k \frac{q_1 q_2}{r^2} \hat{r}_{12}
$$

A conservative force is a force with the property that the total work done in moving a particle between two points is **independent of the path taken**.

If we can define a potential energy for gravity, we can also doe the same for the electric force.

"Electric Potential Energy"

A Point Charge in a Uniform Electric Field

Electric force on charge is

$$
\vec{F} = q_0 \vec{E} = -q_0 E \hat{y}
$$

Work is done on the charge by electric field

$$
W_{a\to b} = \int_{a}^{b} \vec{F} \cdot d\vec{l} = -q_0 E \int_{a}^{b} \hat{y} \cdot d\vec{l} = -q_0 E (y_b - y_a)
$$

We define the electric potential energy $U(\vec{r})$ as a function of \vec{r} , s.t. it satisfies

$$
W_{a\to b} = \underbrace{U(\vec{r}_a)}_{-} - U(\vec{r}_b) = -\underbrace{|\Delta U|}_{-}
$$

Electric potential energy $\omega \vec{r}_a$

Potential energy difference from \vec{r}_b to \vec{r}_a

Electric force is conservative!

A Point Charge in a Uniform Electric Field

$$
W_{a\to b} = U(\vec{r}_a) - U(\vec{r}_b) = -\Delta U
$$

= $q_0 E y_a - q_0 E y_b$

Note that $E > 0$, $y_a > y_b$, 1) If $q_0 > 0$, we have $\Delta U < 0$. (lose U) 2) If $q_0 < 0$, we have $\Delta U > 0$. (gain U)

A positive (negative) test charge will lose (gain) electric potential energy if it moves *along* the field line.

Electric force is conservative!

A Point Charge in a Uniform Electric Field

If no other force in play

$$
K(v_a) + U(\vec{r}_a) = K(v_b) + U(\vec{r}_b)
$$
 (Energy conservation)

$$
U(\vec{r}_a) - U(\vec{r}_b) = K(v_b) - K(v_a) = \frac{1}{2}mv^2 + \frac{1}{2}mv^2
$$

For $q_0 > 0$, $W_{a\to b} = U_a - U_b = -\Delta U = K_b - K_a > 0$

$$
U_b < U_a, K_b > K_a
$$

- o Electric force is doing a **positive** work $(W_{a\rightarrow b} > 0)$
- \circ Electric potential energy **decreases.** $(U_b < U_a)$
- \circ Kinetic energy **increases** ($K_b > K_a$).
- \circ Energy transfer from U to K, and thus remain **conserved** as a whole.

The work done by the electric force is the same for any path from a to b : $W_{a\rightarrow b} = -\Delta U = q_0 E d$

Q: A negative point charge moves from *a* to *b* with a **non-zero** initial velocity. Which of the following is true for electric potential energy U and kinetic energy K for the charge after arriving at b?

- A. U increases, K increases
- B. U decreases, K increases
- C. U increases, K decreases
- D. U decreases, K decreases
- E. Not enough information

Q: A negative point charge moves from a to b with a **non-zero** initial velocity. Which of the following is true for electric potential energy U and kinetic energy K?

Possible ONLY with a non-zero velocity Possible with either a zero or a non-zero velocity

Q: Calculate the work done by the electric force by moving q_0 from $\vec r_a$ to $\vec r_b.$

Step 1 Calculate the Coulomb force.

$$
F = \frac{1}{4\pi\varepsilon_0} \frac{qq_0}{r^2} = q_0 \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} = q_0 E(r)
$$

Step 2 Work is an integration of the force over the path.

$$
W_{a\to b} = \int_{r_a}^{r_b} F_r dr = q_0 \int_{r_a}^{r_b} E(r) dr = q_0 \int_{r_a}^{r_b} \frac{1}{4\pi \varepsilon_0} \frac{qq_0}{r^2} dr
$$

$$
= \frac{qq_0}{4\pi \varepsilon_0} \int_{r_a}^{r_b} \frac{1}{r^2} dr = \frac{qq_0}{4\pi \varepsilon_0} \frac{-1}{r} \Big|_{r_a}^{r_b}
$$

Q: Calculate the work done by the electric force by moving q_0 from \vec{r}_a to \vec{r}_b .

$$
U(\vec{r}_a) - U(\vec{r}_b) = W_{a \to b} = \frac{qq_0}{4\pi\varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b}\right)
$$

In the above calculation, we have assumed $\vec{r}_a \otimes \vec{r}_b$ are along the SAME radial direction.

What about a general displacement where a & b do NOT lie on the same radial line?

Q: Calculate the work done by the electric force by moving q_0 from $\vec r_a$ to $\vec r_b.$

$$
U(\vec{r}_a) - U(\vec{r}_b) = W_{a \to b} = \frac{qq_0}{4\pi \varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b}\right)
$$

The above result holds even when a & b do NOT lie on the same radial line!

On Page 750 of the textbook, a mathematical proof is provided.

In the following, I will provide a "physical" proof.

$$
U(\vec{r}_a) - U(\vec{r}_b) = W_{a \to b} = \frac{qq_0}{4\pi \varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{r_b}\right)
$$

Moving from a to b = Moving from a to ∞ + Moving from ∞ back to b

(Thanks to the conservative force…)

An arbitrary point and "Infinity" always lie along the same radial direction.

$$
U(\vec{r}_a) - U(\infty) = \frac{qq_0}{4\pi\varepsilon_0} \left(\frac{1}{r_a} - \frac{1}{\infty}\right) = \frac{qq_0}{4\pi\varepsilon_0} \frac{1}{r_a}
$$

$$
U(\vec{r}_b) - U(\infty) = \frac{qq_0}{4\pi\varepsilon_0} \left(\frac{1}{r_b} - \frac{1}{\infty}\right) = \frac{qq_0}{4\pi\varepsilon_0} \frac{1}{r_b}
$$

$$
U(\vec{r}_a) - U(\infty) = \frac{qq_0}{4\pi\epsilon_0} \left(\frac{1}{r_a} - \frac{1}{\infty}\right) = \frac{qq_0}{4\pi\epsilon_0} \frac{1}{r_a}
$$

$$
U(\vec{r}_b) - U(\infty) = \frac{qq_0}{4\pi\epsilon_0} \left(\frac{1}{r_b} - \frac{1}{\infty}\right) = \frac{qq_0}{4\pi\epsilon_0} \frac{1}{r_b}
$$

Why don't we define $U(\infty) = 0$ as a reference?

Definition of electric potential energy between two point charges.

Example #1

EXAMPLE 29.2 Approaching a charged sphere

A proton is fired from far away at a 1.0-mm-diameter glass sphere that has been charged to $+100$ nC. What initial speed must the proton have to just reach the surface of the glass?

VISUALIZE FIGURE 29.12 shows the before-and-after pictorial representation. To "just reach" the glass sphere means that the proton comes to rest, $v_f = 0$, as it reaches $r_f = 0.50$ mm, the *radius* of the sphere.

How about kinetic energy?

$$
\vec{v}_f = \vec{v}_i + \int_{\infty}^{r_f, t_f} \vec{a} dt \ge 0
$$
\n
$$
\int_{\infty}^{r_f} \vec{a} dt = \int_{\infty}^{r_f} \vec{F} dt = \frac{e}{m} \int_{\infty}^{r_f} \vec{E}(\vec{r}) dt
$$

Example #1

MODEL Energy is conserved. The glass sphere can be treated as a charged particle, so the potential energy is that of two point charges. The proton starts "far away," which we interpret as sufficiently far to make $U_i \approx 0$.

$$
K(v_a) + U(\vec{r}_a) = K(v_b) + U(\vec{r}_b)
$$

$$
U(\vec{r}_a) - U(\vec{r}_b) = K(v_b) - K(v_a) = \frac{1}{2}mv^2 - \frac{1}{2}mv^2
$$

Example #1

MODEL Energy is conserved. The glass sphere can be treated as a charged particle, so the potential energy is that of two point charges. The proton starts "far away," which we interpret as sufficiently far to make $U_i \approx 0$.

$$
0 + \frac{Kq_{\rm p}q_{\rm sphere}}{r_{\rm f}} = \frac{1}{2}mv_{\rm i}^2 + 0
$$

FIGURE 29.12 A proton approaching a glass sphere.

Multiple Point Charges: Two Different Potential Energies

The **potential energy associated with a test charge**
$$
q_0
$$
 due
to the electric field generated by other charges $q_1, q_2, q_3, ...$

$$
U = \frac{q_0}{4\pi\epsilon_0} \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3} + ... \right) = \frac{q_0}{4\pi\epsilon_0} \sum_i \frac{q_i}{r_i}
$$

Electric constant
Distances from q_0 to $q_1, q_2, q_3, ...$

Meanwhile, $q_1, q_2, q_3, ...$ also have their own electric potential energies. We can thus define the concept of **total potential energy of a point-charge system** as

$$
U_{\text{tot}} = \frac{1}{4\pi\epsilon_0} \sum_{i < j} \frac{q_i q_j}{r_{ij}}
$$

Just Like Building a Pyramid

The potential energy associated with a test charge

The effort of carrying a stone q_0 to the top of pyramid formed by $q_1, q_2, q_3...$

The total potential energy

Building a pyramid from the ground…

Multiple Point Charges

The potential energy for q_0 with respect to all three other charges is

$$
U = \frac{1}{4\pi\varepsilon_0} \sum_i \frac{q_0 q_i}{r_i} = \frac{q_0}{4\pi\varepsilon_0} \left(\frac{q_1}{r_1} + \frac{q_2}{r_2} + \frac{q_3}{r_3}\right)
$$

The total potential energy for all **four** charges is

$$
U_{tot} = \frac{1}{4\pi\epsilon_0} \sum_{i < j} \frac{q_i q_j}{r_{ij}}
$$
\n
$$
= \frac{q_0}{4\pi\epsilon_0} \left(\frac{q_1}{r_{01}} + \frac{q_2}{r_{02}} + \frac{q_3}{r_{03}}\right) + \frac{q_1}{4\pi\epsilon_0} \left(\frac{q_2}{r_{12}} + \frac{q_3}{r_{23}}\right) + \frac{q_2 q_3}{4\pi\epsilon_0 r_{23}}
$$

(We have denoted $r_{0i} \equiv r_i$ for short)

Be very careful about *which potential energy* the question is asking about!

Q3: If the three point charges shown here lie at the vertices of an equilateral triangle, the electric potential energy of charge #1 is

- A. Positive
- B. Negative
- C. Zero
	- D. Not enough information $\Big|\n\begin{array}{c}\n\text{Charge } \#1\n\end{array}\n\Big|$

Q4: If the three point charges shown here lie at the vertices of an equilateral triangle, the total potential energy of all three charges is

- A. Positive
- B. Negative
	- C. Zero
	- D. Not enough information $\Big|\n\begin{array}{c}\n\text{Charge } \#1\n\end{array}\n\Big|$

