ELECTRICITY AND MAGNETISM (PHYS 231)

Lecture 5: Gauss's Law

Sep 4, 2024

1

Review on Gauss's Law

The net flux through any closed surface equals the net (total) charge inside that surface divided by $ε_0$

$$
\Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0}
$$

For a point charge,
$$
\Phi_E = \frac{q}{4\pi\varepsilon_0} \oint_{S} \frac{1}{r^2} \hat{r} \cdot d\vec{A}
$$

\n
$$
\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{r}
$$
\n
$$
= \frac{q}{4\pi\varepsilon_0} \frac{1}{r^2} \oint_{S} dA
$$
\n
$$
\oint_{S} dA = 4\pi r^2
$$
\n
$$
= \frac{q}{\varepsilon_0}
$$
\n
$$
=
$$

Review on Gauss's Law

*The net flux through any closed surface equals the net (total) charge inside that surface divided by ε*₀

$$
\Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0}
$$

The same number of field lines and the same flux pass through both of these area elements.

For a point charge,
$$
\Phi_E = \frac{q}{4\pi\varepsilon_0} \oint_{S} \frac{1}{r^2} \hat{r} \cdot d\vec{A}
$$

\n
$$
\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{r}
$$
\n
$$
= \frac{q}{4\pi\varepsilon_0} \frac{1}{r^2} \oint_{S} dA
$$
\n
$$
\oint_{S} dA = 4\pi r^2
$$
\n
$$
= \frac{q}{\varepsilon_0}
$$
\n
$$
=
$$

Review on Gauss's Law

*The net flux through any closed surface equals the net (total) charge inside that surface divided by ε*₀

$$
\Phi_E = \oiint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0}
$$

The net electric flux **ONLY** scales with the amount of charges.

$$
\Phi_E = \oiint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0}
$$

 \circ Given an \vec{E} distribution, Gauss's law can tell us the charge distribution.

- \circ Given a charge distribution, Gauss's law can tell us the \vec{E} distribution.
- \circ Calculating \vec{E} with Gauss's law can be much simpler than that with Coulomb's law in certain circumstances.

Coulomb or Gauss, that is THE question Ø Coulomb: Discrete Point Charge Gauss: Symmetric Continuous Charge Distribution **Usually, but NOT always**

Choice of Gaussian Surface

$$
\Phi_E = \underbrace{\left| \oint \vec{E} \cdot d\vec{A} \right|}_{\text{SVD}} = \underbrace{Q_{enclosed}}_{\mathcal{E}_0}
$$

Evaluation for a general surface is hard!

- o Gaussian surface is imaginary!
- o We can choose whatever we want!
- o Choose the one with the **highest symmetry**!

Example #1: Point Charge

surface and pointing outward with a constant magnitude E .

This is how Coulomb's law is derived from Gauss's law.

Example #2: A Uniformly Charged Sphere

Charge *q* is uniformly distributed in a ball with a radius .

- 1) Find \vec{E} for $r > R$?
- 2) Find \vec{E} for $r < R$?

Q: Can we use Coulomb's Law? **A**: Yes, we can. But it involves complicated integral and is thus NOT recommended.

- o Gauss's law is preferred.
- o Make use of the **spherical symmetry**.
- o Spherical Gaussian Surface for both $r > R$ & $r < R$

Example #2: $r > R$?

Charge *q* is uniformly distributed in a ball with a radius .

- 1) Find \vec{E} for $r > R$?
- 2) Find \vec{E} for $r < R$?

Just like a point charge!

$$
\Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0}
$$

Step 1 Consider a spherical Gaussian surface with $r > R$.

Step 2 Note that charge enclosed is q .

Step 3 r.h.s. = q/ε_0

Step 4 Note that the field is always normal to the surface and pointing outward with a constant magnitude E .

Step 5 l.h.s. = $E \times$ Area of the Sphere = $4\pi r^2 E$

Step 6 l.h.s. = r.h.s.

$$
E = \frac{q}{4\pi\epsilon_0 r^2}
$$
 for $r > R$.

Example #2: $r < R$?

$$
\Phi_E = \oiint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0}
$$

Different from a point charge!

Step 1 Consider a spherical Gaussian surface with $r < R$.

Step 2 Calculate the charge enclosed. First, the charge density is $\rho = q/(4\pi R^3/3)$, then the charge enclosed by a radius- r sphere is

$$
Q_{enclosed} = \left(\frac{4\pi r^3}{3}\right) * \rho = q \frac{r^3}{R^3}
$$

Step 3 r.h.s. =
$$
Q_{enclosed}/\varepsilon_0 = qr^3/(\varepsilon_0 R^3)
$$

Step 4 Note that the field is always normal to the surface and pointing outward with a constant magnitude E .

Step 5 l.h.s. = $E \times$ Area of the Sphere = $4\pi r^2 E$

Step 6 l.h.s.
$$
=
$$
 r.h.s.

$$
E = \frac{qr}{4\pi\varepsilon_0 R^3} \text{ for } r < R.
$$

Example #2: Summary for a Uniformly Charged Sphere

$$
\overrightarrow{E} = \frac{q}{4\pi\varepsilon_0 r^2} \hat{r} \quad \text{for} \quad r > R
$$

$$
\overrightarrow{E} = \frac{qr}{4\pi\varepsilon_0 R^3} \hat{r} \quad \text{for} \quad r < R
$$

The electric field inside the charged sphere linearly grows as a function of r .

The electric field outside the charged sphere decays in a power-law way (i.e. proportional to $1/r^2$).

- **Step 1** Identify the Symmetry of the charged system.
- **Step 2** Carefully choose a Gaussian surface to exploit the symmetries.
- **Step 3** Identify the total charge enclosed $Q_{enclosed}$.
- **Step 4** r.h.s. = $Q_{enclosed}/\varepsilon_0$
- **Step 5** Calculate the electric flux, i.e. the l.h.s. of the equation. A clever choice of the Gaussian surface can greatly simplify the flux integral.
- **Step 6** l.h.s. = r.h.s.
- **Step 7** Solve for magnitude of \vec{E} and its direction.

Example #3: An Infinitely Long Wire

Q: Electric charge is distributed uniformly along an infinitely long, thin wire. The charge per unit length is λ . Find the electric field by using Gauss's law.

- o A wire has **cylindrical symmetry**.
- o The electric field of an infinitely long + uniformly charged wire can **ONLY point radially** outward for $\lambda > 0$ (or inward for $\lambda < 0$). Why?

- o An infinitely long wire additionally has a **mirror reflection** symmetry!
- \circ The mirror is a plane normal to the wire.
- o Only radially outward/inward electric field is **compatible with the reflection symmetry**.

Example #3: An Infinitely Long Wire

Q: Electric charge is distributed uniformly along an infinitely long, thin wire. The charge per unit length is $\lambda > 0$. Find the electric field by using Gauss's law.

- o A wire has **cylindrical symmetry**.
- \circ The electric field of an infinitely long + uniformly charged wire can **ONLY point radially** outward for $\lambda > 0$ (or inward for $\lambda < 0$).
- o Consider a **cylindrical** Gaussian surface of radius r and length l .
- \circ \vec{E} is **normal** to the side surface of the cylinder and maintain a **constant** magnitude E

Example #3: An Infinitely Long Wire

Q: Electric charge is distributed uniformly along an infinitely long, thin wire. The charge per unit length is $\lambda > 0$. Find the electric field by using Gauss's law.

- o Consider a cylindrical Gaussian surface of radius r and length l .
- \circ \vec{E} is normal to the Gaussian surface and maintain a constant magnitude E

$$
\Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0}
$$

r.h.s. =
$$
\frac{Q_{enclosed}}{\varepsilon_0} = \lambda l / \varepsilon_0
$$

l.h.s. = $E \times$ side surface area of the cylinder = $2\pi r l E$

Example #4: An Infinite Plane Sheet of Charge

Q: Use Gauss's law to find the electric field caused by a thin, flat, infinite sheet with a uniform positive surface charge density $\sigma > 0$.

Try to convince yourself that the electric field direction **MUST** be perpendicular to the charged plane, because there exists an infinite number of **mirror reflection symmetries** (like the one shown here) for an infinitely large plane.

Example #4: An Infinitely Plane Sheet of Charge

Q: Use Gauss's law to find the electric field caused by a thin, flat, infinite sheet with a uniform positive surface charge density $\sigma > 0$.

- o Consider a cylindrical Gaussian surface of radius r and length l .
- \circ \vec{E} is **normal** to the top & bottom surface of the cylinder and maintain a constant magnitude E

$$
\Phi_E = \oiint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0}
$$

r.h.s. =
$$
\frac{Q_{enclosed}}{\varepsilon_0} = \pi r^2 \sigma / \varepsilon_0
$$

l.h.s. = $E \times \text{top } 8$ bottom surface areas of the cylinder
= $2 \times \pi r^2 E$

Fact #1: In the *electrostatic* limit (no movement of charges), the electric field inside a conductor will be everywhere zero.

(easy to understand: no movement --> no force --> no field)

Fact #2: When *excess charge* is placed on a solid conductor and is at rest, it resides entirely *on the surface*, NOT in the interior of the material. Gaussian surface A

- 1) The zero-field-condition (fact #1) indicates an arbitrary Gaussian surface inside the conductor will necessarily have zero flux.
- 2) Namely, an arbitrary Gaussian surface will enclose zero net charge.
- 3) No excess charge can live in the interior of the conductor.
- 4) Excess charge can **ONLY** live on the surface.

Field at the Surface of a Conductor

Electric field at surface of a conductor, E_1 \vec{E} perpendicular to surface

$$
= \frac{\sigma^{\text{4}}}{\epsilon_0^{\text{4}}}
$$
 Surface charge density
Electric constant

$$
\Phi_E = \oiint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0}
$$

Consider a cylindrical Gaussian surface with a radius r

I.h.s. = $\Phi_F = E \pi r^2$ (only top surface contributes) r.h.s. = $Q_{enclosed}/\varepsilon_0 = \pi r^2 \sigma/\varepsilon_0$

