ELECTRICITY AND MAGNETISM (PHYS 231)

Lecture 4: Electric Flux and Gauss's Law

Aug 28, 2024 Homework #1 Due 11 pm Today !

1

Review on Coulomb's Law

Spoiler for This Lecture

Charles-Augustin de Coulomb $(1736 - 1806)$

Johann Carl Friedrich Gauss $(1777 - 1855)$

$$
\vec{F}_{12} = k \frac{q_1 q_2}{r^2} \hat{r}_{12} = \frac{1}{4\pi \varepsilon_0} \frac{q_1 q_2}{r^2} \hat{r}_{12} \qquad \qquad \Phi_E = \oiint_{E} \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0}
$$

Gauss's law is a law relating the distribution of electric charge to the resulting electric field. (sounds like Coulomb's law, right?)

Theoretically

Gauss's law is **more fundamental** than Coulomb's law (that's why it's one of the Four!)

1) One can derive Coulomb's law from Gauss's law.

2) Coulomb's law ONLY works for stationary charges.

Practically

Gauss's law can significantly simplify *E*-field calculation, when certain **symmetry** exists.

Gauss's Law

The net electric flux through any closed surface is equal to $1/\epsilon_0$ *times the net electric charge within that closed surface.*

In plain language

Flux = The amount of something that passes through some surface.

In vector calculus

Flux = The surface integral of the perpendicular component of a vector field over a surface.

Electric Flux

Consider a uniform electric field \vec{E} and a flat surface A

$$
\Phi_E = \vec{E} \cdot A \hat{n}
$$
 (Electric flux going through A)

 \circ \hat{n} is the unit vector of the surface normal.

 \circ Φ _E can be viewed as the number of field lines crossing through A .

Electric Field Lines: Magnitude: Line Density (space between lines) Direction: Tangent along the arrow

Area Vector

$$
\left(\Phi_E = \vec{E} \cdot A \hat{n} = \vec{E} \cdot \vec{A}\right)
$$

Magnitude of \vec{A} = Area of the surface $\Phi_E = \vec{E} \cdot \vec{A} \hat{n} = \vec{E} \cdot \vec{A}$ Direction of \vec{A} = Normal to the surface

- \circ For an open surface, the direction of \vec{A} must be specified before calculating Φ_E .
- o For a closed surface (e.g. a spherical surface), we always choose ⃗ to be **pointing outward** (i.e. from inner to outer).

Electric Flux

 Φ_E can be viewed as the number of field lines crossing through A.

Electric Flux & Enclosed Charge

Positive & negative charges are the "source" & "drain" of electric field.

Not quiz!

Q: What will happen to the net flux with an enlarged box?

- A. Same
	- B. Increase
	- C. Decrease
	- D. Not Enough Information

The net flux for a closed surface does NOT depend on the size & shape of the surface.

Gauss's Law in Plain Language

The net flux for any closed surface **ONLY** depends on the net charge enclosed.

A simple hand-waiving "proof":

- 1) Electric flux = $#$ of field lines penetrating the surface.
- 2) # of field lines is completely determined by the charges.
- 3) Electric flux = charge enclosed.

Let's now make Gauss's law a little bit mathematical!

 $\Phi_E = \vec{E} \cdot \vec{A}$ only works for both a uniform \vec{E} and a flat surface.

This definition breaks down even for a point charge in a box…

Don't worry, we still have Calculus!

Step 1

Break the surface area \vec{A} into small pieces $d\vec{A}$ **Step 2**

Calculate the flux through each piece

$$
d\Phi = \vec{E} \cdot d\vec{A}
$$

Step 3

Sum them. This just becomes an area integral.

$$
\Phi_E = \iint_A d\Phi = \iint_{A} \vec{E} \cdot d\vec{A}
$$

Flux of a Point Charge

For a point charge,
$$
\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{r}
$$

\n
$$
d\Phi_E = \vec{E} \cdot d\vec{A} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{r} \cdot d\vec{A}
$$
\nSurface integral over a box is
\ndouble, but difficult!
\nSince the flux integral does **NOT** depend on
\nthe shape of the closed surface, can we pick
\na "better" surface to simplify the integral?

A Symmetric Surface is a "Better" Surface

 $d\Phi$ is the same everywhere

$$
\Phi_E = \iint_{\text{Sphere}} \vec{E} \cdot d\vec{A} = \frac{q}{4\pi \varepsilon_0} \iint_{\text{sphere}} \vec{r} \cdot d\vec{A} = \frac{q}{4\pi \varepsilon_0} \frac{1}{r^2} \oiint_{S} \hat{r} \cdot \hat{n} dA = \frac{q}{4\pi \varepsilon_0} \frac{1}{r^2} \oiint_{S} dA
$$

Gauss's Law

$$
\Phi_E = \iint_{\text{sphere}} \vec{E} \cdot d\vec{A} = \frac{q}{4\pi\varepsilon_0} \frac{1}{r^2} \oiint_{S} dA
$$

surface area of a sphere (how to calculate it?)

$$
\Phi_E = \oiint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0}
$$

Gauss's Law

The net electric flux *through any* closed surface *is equal to* $1/\epsilon_0$ *times the net electric charge within that closed surface.*

Gauss's Law

$$
\Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0}
$$

Progress for Maxwell equations

From Gauss's Law to Coulomb's Law?

$$
\Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0} \qquad \vec{F}_{12} = k \frac{q_1 q_2}{r^2} \hat{r}_{12} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2} \hat{r}_{12}
$$

$$
\Phi_E = \oiint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0}
$$

 \circ Given an \vec{E} distribution, Gauss's law can tell us the charge distribution.

- \circ Given a charge distribution, Gauss's law can tell us the \vec{E} distribution.
- \circ Calculating \vec{E} with Gauss's law can be much simpler than that with Coulomb's law in certain circumstances.

Coulomb or Gauss, that is THE question Ø Coulomb: Discrete Point Charge Gauss: Symmetric Continuous Charge Distribution **Usually, but NOT always**

Review on Coulomb's Law

The ionic molecule potassium bromide (KBr), made up of a positive potassium ion (K^+) of charge $+e = 1.60 \times 10^{-19}$ C and a negative bromine ion (Br⁻) of charge $-e = -1.60 \times 10^{-19}$ C, has an electric dipole moment of 3.50×10^{-29} C \cdot m. Calculate the distance between the two ions.

At a certain point along the axis that connects the ions, the electric field due to the KBr molecule has magnitude 8.00×10^4 N/C. How far from the center of the molecule is this point?

Express your answer with the appropriate units.