1 of 6

Department of Mathematics – University of Tennessee

Math 251 Matrix Algebra I

Test 3

Name: _____

Time allowed: 50 minutes

Instructions:

- Calculators are not allowed.
- All electronic devices must be put away.
- Answers with insufficient or incorrect working will not receive full credit.
- Simplify answers whenever possible.

Page	Points	Score
2	10	
3	10	
4	10	
5	10	
6	10	
Total:	50	

- 1. (10 pts) Decide whether each statement is TRUE or FALSE. No justification is required.
 - The set of all polynomials with the usual addition and scalar multiplication is a vector space.
 - The intersection of two subspaces of a vector space V is also a subspace of V.
 - If S is a set of vectors in a vector space V, then span(S) is a subspace of V.
 - The span of a nonzero vector in \mathbb{R}^3 is a line.
 - The polynomials x 1, $(x 1)^2$, and $(x 1)^3$ span P_3 .
 - If W is a set of vectors containing the zero vector, then W is linearly independent.
 - Every set of n linearly independent vectors in \mathbb{R}^n is a basis for \mathbb{R}^n .
 - If B is the standard basis for \mathbb{R}^n and \vec{v} is in \mathbb{R}^n , then $[\vec{v}]_B = \vec{v}$.
 - If W is a subspace of a finite-dimensional vector space V, then $\dim W \leq \dim V$.
 - If A is a 3×3 matrix, then $A = P_{B_1 \to B_2}$ for some bases B_1 and B_2 of \mathbb{R}^3 .

2. (6 pts) Let V be the set of all pairs $\vec{v} = (a, b)$ of real numbers with the following operations:

$$(a,b) + (c,d) = (a+c,0),$$

 $k(a,b) = (ka,kb).$

(a) Does V satisfy axiom 2 for vector spaces? Prove or give a counterexample.

(b) Does V satisfy axiom 8 for vector spaces? Prove or give a counterexample.

3. (4 pts) Determine whether the set of polynomials of the form $p(x) = a + bx^2$ is a subspace of P_2 .

4. (10 pts) Consider the matrices
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, and $C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

(a) Determine whether A, B, and C span M_{22} .

(b) Determine whether A, B, and C are linearly independent in M_{22} .

(c) Is the set $\{A, B, C\}$ a basis for M_{22} ? Explain briefly.

5. (10 pts) Let $B_1 = \{(1,1), (1,-1)\}$ and $B_2 = \{(0,1), (1,2)\}$ be two bases for \mathbb{R}^2 . (a) Find the coordinate vector $[\vec{v}]_{B_1}$ with respect to B_1 for $\vec{v} = (2,4)$.

(b) Find the transition matrix $P_{B_1 \to B_2}$.

(c) Use your answer from part (a) to find $[\vec{v}]_{B_2}$.

(d) Does your answer to part (c) match what you expect? Explain briefly.

6. (6 pts) Consider the linear system below.

$$\begin{aligned} x_1 - 2x_2 + 2x_3 &= 0\\ x_1 - x_2 + 2x_3 - x_4 &= 0\\ x_2 &- x_4 &= 0 \end{aligned}$$

The general solution for this system is $x_1 = -2s + 2t$, $x_2 = t$, $x_3 = s$, $x_4 = t$.

(a) Find a basis for the solution space of the linear system.

(b) What is the dimension of this solution space? Explain briefly.

- 7. (4 pts) State the dimension of each vector space. No justification is required.
 (a) R⁵
 - (b) P_3
 - (c) The set of all 3×3 lower triangular matrices.
 - (d) The subspace of \mathbb{R}^3 spanned by the vectors $\vec{u} = (1, -1, 0)$ and $\vec{v} = (-1, 1, 0)$.