

Test 3

Name: Solutions

Time allowed: 50 minutes

Instructions:

- Calculators are not allowed.
- All electronic devices must be put away.
- Answers with insufficient or incorrect working will not receive full credit.
- Simplify answers whenever possible.

Page	Points	Score
2	10	
3	10	
4	10	
5	10	
6	10	
Total:	50	

- 1. (10 pts) Decide whether each statement is TRUE or FALSE. No justification is required.
 - The set of all polynomials with the usual addition and scalar multiplication is a vector space.

True.

• The intersection of two subspaces of a vector space V is also a subspace of V.

True.

• If S is a set of vectors in a vector space V, then $\mathrm{span}(S)$ is a subspace of V.

True.

• The span of a nonzero vector in \mathbb{R}^3 is a line.

True.

• The polynomials x-1, $(x-1)^2$, and $(x-1)^3$ span P_3 .

False.

• If W is a set of vectors containing the zero vector, then W is linearly independent.

False.

• Every set of n linearly independent vectors in \mathbb{R}^n is a basis for \mathbb{R}^n .

True.

• If B is the standard basis for \mathbb{R}^n and \vec{v} is in \mathbb{R}^n , then $[\vec{v}]_B = \vec{v}$.

True.

• If W is a subspace of a finite-dimensional vector space V, then $\dim W \leq \dim V$.

True.

• If A is a 3×3 matrix, then $A = P_{B_1 \to B_2}$ for some bases B_1 and B_2 of \mathbb{R}^3 .

False.

2. (6 pts) Let V be the set of all pairs $\vec{v} = (a, b)$ of real numbers with the following operations:

$$(a,b) + (c,d) = (a+c,0),$$

 $k(a,b) = (ka,kb).$

(a) Does V satisfy axiom 2 for vector spaces? Prove or give a counterexample.

$$(a,b)+(c,d)=(a+c,o)=(c+a,o)=(c,d)+(a,b)$$
.

(b) Does V satisfy axiom 8 for vector spaces? Prove or give a counterexample.

No.
$$(1+1)(1,1) = 2(1,1) = (2,2)$$

$$1(1,1)+1(1,1) = (1,1)+(1,1) = (2,0).$$
Thus
$$(1+1)(1,1) \neq 1(1,1)+1(1,1).$$

3. (4 pts) Determine whether the set of polynomials of the form $p(x) = a + bx^2$ is a subspace of P_2 .

$$(a+bx^2)+(c+dx^2)=(a+c)+(b+d)x^2$$
,
so the set is closed under addition.
 $k(a+bx^2)=(ka)+(kb)x^2$,
so the set is closed under scalar multiplication.
Thus the set of polynomials of the form $a+bx^2$ is a subspace of P_2 .

- 4. (10 pts) Consider the matrices $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, and $C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
 - (a) Determine whether A, B, and C span M_{22} .

$$k_{1}\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} + k_{2}\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} + k_{3}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\Rightarrow \begin{cases} k_{1} + k_{2} & = a \\ k_{1} + k_{3} = b \end{cases} \Rightarrow a = d.$$

$$k_{1} + k_{2} & = d$$

Thus A,B,C do not span M22.

(b) Determine whether A, B, and C are linearly independent in M_{22} .

from part (a):
$$\begin{cases} k_1 + k_2 &= 0 \\ k_1 + k_3 &= 0 \end{cases}$$

$$\begin{cases} k_1 + k_3 &= 0 \end{cases}$$

$$\begin{cases} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \xrightarrow{0} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{0} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{0} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{0} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{0} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{0} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{0} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{0} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{0} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{0} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{0} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

$$\Rightarrow k_1 = 0, \quad k_2 = 0, \quad k_3 = 0.$$
Thus, ARC are linearly independent.

Thus A,B,C are linearly independent.

(c) Is the set $\{A, B, C\}$ a basis for M_{22} ? Explain briefly.

No. The set
$$\{A,B,C\}$$
 does not span M_{22} , so is not a basis for M_{22} .

- 5. (10 pts) Let $B_1 = \{(1,1), (1,-1)\}$ and $B_2 = \{(0,1), (1,2)\}$ be two bases for \mathbb{R}^2 .
 - (a) Find the coordinate vector $[\vec{v}]_{B_1}$ with respect to B_1 for $\vec{v} = (2, 4)$.

$$\vec{V} = (2,4) = 3(1,1) + (-1)(1,-1),$$

so $[\vec{V}]_{R_1} = (3,-1).$

(b) Find the transition matrix $P_{B_1 \to B_2}$.

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 2 & 1 & -1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -1 & -3 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$P_{\mathcal{B}_1 \to \mathcal{B}_2} = \begin{bmatrix} -1 & -3 \\ 1 & 1 \end{bmatrix}.$$

(c) Use your answer from part (a) to find $[\vec{v}]_{B_2}$.

$$\begin{bmatrix} \overrightarrow{V} \end{bmatrix}_{\mathcal{B}_2} = P_{\mathcal{B}_1 \to \mathcal{B}_2} \begin{bmatrix} \overrightarrow{V} \end{bmatrix}_{\mathcal{B}_1} = \begin{bmatrix} -1 & -3 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}.$$

(d) Does your answer to part (c) match what you expect? Explain briefly.

Yes.
$$\vec{V} = O(0,1) + 2(1,2)$$
, so $\begin{bmatrix} \vec{v} \end{bmatrix}_{B_2} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ by definition.

6. (6 pts) Consider the linear system below.

$$x_1 - 2x_2 + 2x_3 = 0$$

$$x_1 - x_2 + 2x_3 - x_4 = 0$$

$$x_2 - x_4 = 0$$

The general solution for this system is $x_1 = -2s + 2t$, $x_2 = t$, $x_3 = s$, $x_4 = t$.

(a) Find a basis for the solution space of the linear system.

The general solution is

$$\overrightarrow{R} = (-2s + 2t, t, s, t)$$

$$= s(-2,0,1,0) + t(2,1,0,1).$$
A basis for the solution space is
$$B = \begin{cases} (-2,0,1,0), (2,1,0,1) \end{cases}.$$

(b) What is the dimension of this solution space? Explain briefly.

The dimension is 2, because the basis in part (a) contains two vectors.

- 7. (4 pts) State the dimension of each vector space. No justification is required.
 - (a) \mathbb{R}^5

5

(b) P_3

4

(c) The set of all 3×3 lower triangular matrices.

6

(d) The subspace of \mathbb{R}^3 spanned by the vectors $\vec{u} = (1, -1, 0)$ and $\vec{v} = (-1, 1, 0)$.

1