1 of 6

Department of Mathematics – University of Tennessee

Math 251 Matrix Algebra I

Test 3 Practice

Name: _____

Time allowed: 50 minutes

Instructions:

- Calculators are not allowed.
- All electronic devices must be put away.
- Answers with insufficient or incorrect working will not receive full credit.
- Simplify answers whenever possible.

Page	Points	Score
2	10	
3	10	
4	10	
5	10	
6	10	
Total:	50	

- 1. (10 pts) Decide whether each statement is TRUE or FALSE. No justification is required.
 - \mathbb{R}^n with the usual addition and scalar multiplication is a vector space.
 - A vector space must contain at least two vectors.
 - The set of all invertible $n \times n$ matrices is a subspace of M_{nn} .
 - The union of two subspaces of a vector space V is also a subspace of V.
 - The span of a finite set of vectors in a vector space V is closed under addition.
 - Every linearly independent set contains the zero vector.
 - If $V = \operatorname{span}(S)$, then S is a basis for V.
 - Every linearly independent subset of a vector space V is a basis for V.
 - Every set of four vectors that span \mathbb{R}^4 is a basis for \mathbb{R}^4 .
 - Transition matrices are invertible.

2. (6 pts) Let V be the set of all pairs $\vec{v} = (a, b)$ of real numbers with the following operations:

$$(a,b) + (c,d) = (a+c,b-d),$$

 $k(a,b) = (ka,0).$

(a) Does V satisfy axiom 2 for vector spaces? Prove or give a counterexample.

(b) Does V satisfy axiom 8 for vector spaces? Prove or give a counterexample.

3. (4 pts) Determine whether the set of 2×2 matrices $\begin{bmatrix} x & y \\ 0 & z \end{bmatrix}$ such that x + z = 0 is a subspace of M_{22} .

4. (10 pts) Let $S = \{1, 1 + x, 1 - x + x^2\}.$

Recall that P_2 is the set of all polynomials with degree at most 2.

(a) Determine whether S spans P_2 .

(b) Determine whether S is linearly independent in P_2 .

(c) Is S a basis for P_2 ? Explain briefly.

- 5. (10 pts) Let $B_1 = \{(1,0), (1,1)\}$ and $B_2 = \{(0,1), (1,-1)\}$ be two bases for \mathbb{R}^2 .
 - (a) Find the coordinate vector $[\vec{v}]_{B_1}$ with respect to B_1 for $\vec{v} = (3, 1)$.

(b) Find the transition matrix $P_{B_1 \to B_2}$.

(c) Use your answer from part (a) to find $[\vec{v}]_{B_2}$.

 (10 pts) Describe the solution space for each linear system as a subspace of ℝ³, and state the dimension of each solution space.

(a)
$$\begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$