## 

## **Test 3 Practice**

Name: Solutions

Time allowed: 50 minutes

## **Instructions:**

- Calculators are not allowed.
- All electronic devices must be put away.
- Answers with insufficient or incorrect working will not receive full credit.
- Simplify answers whenever possible.

| Page   | Points | Score |
|--------|--------|-------|
| 2      | 10     |       |
| 3      | 10     |       |
| 4      | 10     |       |
| 5      | 10     |       |
| 6      | 10     |       |
| Total: | 50     |       |

- 1. (10 pts) Decide whether each statement is TRUE or FALSE. No justification is required.
  - $\mathbb{R}^n$  with the usual addition and scalar multiplication is a vector space.

True.

• A vector space must contain at least two vectors.

False.

• The set of all invertible  $n \times n$  matrices is a subspace of  $M_{nn}$ .

False

ullet The union of two subspaces of a vector space V is also a subspace of  $V_{\circ}$ 

False.

ullet The span of a finite set of vectors in a vector space V is closed under addition.

True.

• Every linearly independent set contains the zero vector.

False.

• If V = span(S), then S is a basis for V.

False.

ullet Every linearly independent subset of a vector space V is a basis for V.

False.

• Every set of four vectors that span  $\mathbb{R}^4$  is a basis for  $\mathbb{R}^4$ .

True.

• Transition matrices are invertible.

True.

2. (6 pts) Let V be the set of all pairs  $\vec{v} = (a, b)$  of real numbers with the following operations:

$$(a,b) + (c,d) = (a+c,b-d),$$
  
 $k(a,b) = (ka,0).$ 

(a) Does V satisfy axiom 2 for vector spaces? Prove or give a counterexample.

No. 
$$(0,1) + (1,0) = (1,1)$$
 and  $(1,0) + (0,1) = (1,-1)$ ,  
so  $(0,1) + (1,0) \neq (1,0) + (0,1)$ .

(b) Does V satisfy axiom 8 for vector spaces? Prove or give a counterexample.

Yes. 
$$(k+m)(a,b) = ((k+m)a, o)$$
  
=  $(ka + ma, o)$   
=  $(ka, o) + (ma, o)$   
=  $k(a,b) + m(a,b)$ .

3. (4 pts) Determine whether the set of  $2 \times 2$  matrices  $\begin{bmatrix} x & y \\ 0 & z \end{bmatrix}$  such that x + z = 0 is a subspace of  $M_{22}$ .

If 
$$x_1 + \xi_1 = 0$$
 and  $x_2 + \xi_2 = 0$ , then
$$\begin{bmatrix} x_1 & y_1 \\ 0 & \xi_1 \end{bmatrix} + \begin{bmatrix} x_2 & y_2 \\ 0 & \xi_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 & y_1 + y_2 \\ 0 & \xi_1 + \xi_2 \end{bmatrix}$$
where  $(x_1 + x_2) + (\xi_1 + \xi_2) = (x_1 + \xi_1) + (x_2 + \xi_2) = 0 + 0 = 0$ .

If 
$$x+z=0$$
, then
$$k\begin{bmatrix} x & y \\ 0 & z \end{bmatrix} = \begin{bmatrix} kx & ky \\ 0 & kz \end{bmatrix}$$
where  $kx+kz=k(x+z)=k(0)=0$ .

This set is closed under addition and scalar multiplication, so it is a subspace of  $M_{22}$ .

4. (10 pts) Let  $S = \{1, 1+x, 1-x+x^2\}.$ 

Recall that  $P_2$  is the set of all polynomials with degree at most 2.

(a) Determine whether S spans  $P_2$ .

$$k_{1}(1) + k_{2}(1+x) + k_{3}(1-x+x^{2}) = a_{0} + a_{1}x + a_{2}x^{2}$$

$$\Rightarrow \begin{cases} k_{1} + k_{2} + k_{3} = a_{0} \\ k_{2} - k_{3} = a_{1} \\ k_{3} = a_{2} \end{cases} \Rightarrow \begin{cases} k_{1} = a_{0} - a_{1} - 2a_{2} \\ k_{2} = a_{1} + a_{2} \\ k_{3} = a_{2} \end{cases}$$

This system is consistent for all choices of ao, a, az.

Thus S spans P2.

(b) Determine whether S is linearly independent in  $P_2$ .

From part (a), the only solution to 
$$k_1(1) + k_2(1+x) + k_3(1-x+x^2) = 0$$
 is the trivial solution  $k_1 = 0$ ,  $k_2 = 0$ ,  $k_3 = 0$ .

Thus S is linearly independent.

(c) Is S a basis for  $P_2$ ? Explain briefly.

Yes. S is linearly independent and spans 
$$P_2$$
, so S is a basis for  $P_2$ .

- 5. (10 pts) Let  $B_1 = \{(1,0), (1,1)\}$  and  $B_2 = \{(0,1), (1,-1)\}$  be two bases for  $\mathbb{R}^2$ .
  - (a) Find the coordinate vector  $[\vec{v}]_{B_1}$  with respect to  $B_1$  for  $\vec{v}=(3,1)$ .

$$\vec{V} = (3,1) = 2(1,0) + 1(1,1),$$
so 
$$[\vec{V}]_{\mathcal{B}_1} = \begin{bmatrix} 2\\1 \end{bmatrix}.$$

(b) Find the transition matrix  $P_{B_1 \to B_2}$ .

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & -1 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$P_{\mathcal{B}_1 \to \mathcal{B}_2} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}.$$

(c) Use your answer from part (a) to find  $[\vec{v}]_{B_2}$ 

$$\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathfrak{C}_{2}} = P_{\mathfrak{B}_{3} \to \mathfrak{F}_{2}} \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathfrak{B}_{1}}$$

$$= \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 4 \\ 3 \end{bmatrix}.$$

6. (10 pts) Describe the solution space for each linear system as a subspace of  $\mathbb{R}^3$ , and state the dimension of each solution space.

(a) 
$$\begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(a)  $\begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$  The solution space is the plane through the origin with normal (1, -2, 1).

i.e. all points x = 2s-t, y = s, z=t.

The dimension is 2.

(b) 
$$\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(b)  $\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$  The solution space is the line through the origin parallel to (3, -2, -1).

i.e. all points z=3t, y=-2t, ==-t.

The dimension is 1.

(c) 
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(c)  $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$  The solution space is the point (0,0,0). The dimension is O.