1 of 6

Department of Mathematics – University of Tennessee

Math 251 Matrix Algebra I

Test $\mathbf{2}$

Name: _____

Time allowed: 50 minutes

Instructions:

- Calculators are not allowed.
- All electronic devices must be put away.
- Answers with insufficient or incorrect working will not receive full credit.
- Simplify answers whenever possible.

Page	Points	Score
2	10	
3	10	
4	10	
5	10	
6	10	
Total:	50	

- 1. (10 pts) Decide whether each statement is TRUE or FALSE. No justification is required.
 - If A and B are square matrices of the same size, then $\det(A + B) = \det A + \det B$.
 - If A and B are square matrices of the same size, then $\det(AB) = (\det A)(\det B)$.
 - If A is an invertible matrix, then det $A \neq 0$.

• The adjoint of
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is $\operatorname{adj} A = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$.

- If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.
- If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then $|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| \, ||\vec{v}||$.
- If \vec{a} and \vec{b} are orthogonal, then $\operatorname{proj}_{\vec{a}}(\operatorname{proj}_{\vec{b}}(\vec{u})) = \vec{0}$.
- If \vec{x} is a solution to the linear system $A\vec{x} = \vec{b}$, then \vec{x} is orthogonal to every row of the matrix A.
- The equation of a plane can be determined from any three distinct points on the plane.
- If \vec{u} and \vec{v} are vectors in \mathbb{R}^3 , then $\|\vec{u} \times \vec{v}\|^2 = \|\vec{u}\|^2 \|\vec{v}\|^2 (\vec{u} \cdot \vec{v})^2$.

2. (5 pts) Find the determinant of the matrix A using cofactor expansion down the first column.

$$A = \begin{bmatrix} 3 & -2 & 0 \\ 5 & 1 & -3 \\ 0 & -1 & 1 \end{bmatrix}$$

3. (5 pts) Find the determinant of the matrix B.

$$B = \begin{bmatrix} 0 & -4 & 4 & 2 \\ 3 & 0 & 1 & 1 \\ 0 & 2 & 0 & -1 \\ 3 & 0 & -2 & 2 \end{bmatrix}$$

- 4. (4 pts) Suppose that A is a 3 × 3 matrix with det A = 4.
 (a) Find det (2A).
 - (b) Find det B, where B is obtained from A by replacing row 1 with the sum of row 1 and row 2.
 - (c) Find $\det C$, where C is obtained from A by swapping row 1 and row 2.

(d) Find det (A^T) .

- 5. (6 pts) Let $\vec{u} = (2, 0, 1)$ and $\vec{v} = (-1, 2, 1)$. Compute each of the following, or explain why it is not possible.
 - (a) $(\vec{u} \cdot \vec{v})\vec{v} =$

(b) $\|\vec{u} + \vec{v}\| =$

(c) $\vec{u} \times (\vec{u} \cdot \vec{v}) =$

6. (5 pts) Consider the two vectors $\vec{a} = (1, -1, -1, 1)$ and $\vec{b} = (2, -2, 0, -1)$. Find the component of \vec{b} parallel to \vec{a} and the component of \vec{b} orthogonal to \vec{a} .

7. (5 pts) Conisder the vector v = (3, -2, -2) in ℝ³ and the point x₀ = (3, 6, -1).
(a) Find a scalar equation for the plane containing x₀ and orthogonal to v.

(b) Find a vector equation for the line through \vec{x}_0 and parallel to \vec{v} .

8. (5 pts) Find the area of the triangle in \mathbb{R}^3 with vertices A = (2, 0, 1), B = (3, -2, 2), and C = (1, 5, -1).

9. (5 pts) Suppose that \vec{u} and \vec{v} are vectors in \mathbb{R}^n with $\|\vec{u}\| = \|\vec{v}\|$. Show that $\vec{u} + \vec{v}$ is orthogonal to $\vec{u} - \vec{v}$.