1 of 6

Department of Mathematics – University of Tennessee

Math 251 Matrix Algebra I

Test 2 Practice

Name: _____

Time allowed: 50 minutes

Instructions:

- Calculators are not allowed.
- All electronic devices must be put away.
- Answers with insufficient or incorrect working will not receive full credit.
- Simplify answers whenever possible.

Page	Points	Score
2	10	
3	10	
4	10	
5	10	
6	10	
Total:	50	

1. (10 pts) Decide whether each statement is TRUE or FALSE. No justification is required.

• The determinant of the matrix
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is $ad - bc$.

- The determinant of an upper triangular matrix is the sum of the entries on the main diagonal.
- If det A = 5 then det (2A) = 10.
- If A is an $n \times n$ matrix, then $A(\operatorname{adj} A) = (\det A) I_n$.
- If $\vec{u} + \vec{v} = \vec{u} + \vec{w}$, then $\vec{v} = \vec{w}$.
- If $\vec{u} \cdot \vec{v} = 0$, then either $\vec{u} = \vec{0}$ or $\vec{v} = \vec{0}$.
- If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then $\|\vec{u} + \vec{v}\| \ge \|\vec{u}\| + \|\vec{v}\|$.
- The vectors (1, 2, 3) and (-3, 2, -1) are orthogonal.
- A vector equation for a line can be determined from any point on the line and any nonzero vector parallel to the line.
- If \vec{u} is any vector in \mathbb{R}^3 , then $\vec{u} \times \vec{u} = \vec{0}$.

2. (5 pts) Find the determinant of the matrix A.

$$A = \begin{bmatrix} 1 & 3 & 3 & 1 \\ 0 & 3 & 2 & 1 \\ 1 & 3 & -1 & 0 \\ 2 & -2 & 1 & 0 \end{bmatrix}$$

3. (5 pts) Use Cramer's Rule to find the value of y given the linear system below.

$$x + 3y - z = 2$$

$$2x - 4y + z = 0$$

$$2x + y - 8z = 5$$

4. (10 pts) Let $\vec{u} = (2, -2, 1)$, $\vec{v} = (3, 3, 1)$, and $\vec{w} = (0, 4, -2)$. Compute each of the following, or explain why it is not possible.

(a) $\vec{u} \cdot \vec{v} =$

(b) $\|\vec{u}\| =$

(c) $\operatorname{proj}_{\vec{u}} \vec{v} =$

(d) $\vec{u} + (\vec{v} \cdot \vec{w}) =$

(e) $\vec{u} + (\vec{v} \times \vec{w}) =$

5. (5 pts) Find the component of $\vec{u} = (1, 2, 3, 4)$ that is parallel to $\vec{a} = (1, 1, 1, 1)$ and the component of \vec{u} that is orthogonal to \vec{a} .

- 6. (5 pts) Conisder the plane in \mathbb{R}^3 that is parallel to the vector $\vec{v} = (1,1,1)$ and contains both of the points $\vec{x}_0 = (2,6,-1)$ and $\vec{x}_1 = (-1,4,0)$.
 - (a) Find a vector equation for the plane.

(b) Find parametric equations for the plane.

7. (5 pts) Find the volume of the parallelepiped in \mathbb{R}^3 determined by the vectors $\vec{a} = (1, 0, 1), \vec{b} = (1, 1, -1),$ and $\vec{c} = (0, -1, 1).$

8. (5 pts) Let \vec{u} and \vec{v} be unit vectors in \mathbb{R}^3 , and let $\vec{w} = \vec{u} + \vec{v}$. Show that the angle between \vec{u} and \vec{w} is equal to the angle between \vec{v} and \vec{w} .

Hint: it is enough to show that the cosines of the angles are equal.