1 of 6

Department of Mathematics – University of Tennessee

Math 251 Matrix Algebra I

Test 1

Name: _____

Time allowed: 50 minutes

Instructions:

- Calculators are not allowed.
- All electronic devices must be put away.
- Answers with insufficient or incorrect working will not receive full credit.
- Simplify answers whenever possible.

Page	Points	Score
2	10	
3	10	
4	10	
5	10	
6	10	
Total:	50	

- 1. (10 pts) Decide whether each statement is TRUE or FALSE. No justification is required.
 - A linear system with more variables than equations has no solutions.

• The matrix
$$\begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 2 \end{bmatrix}$$
 is in reduced row echelon form.

- If the products AB and BA are both defined, then A and B are square matrices of the same size.
- If A and B are invertible matrices of the same size, then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

• The matrix
$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
 is an elementary matrix.

- If A is an $n \times n$ matrix that is not invertible, then the linear system $A\vec{x} = \vec{0}$ has infinitely many solutions.
- If A is row equivalent to the identity matrix I_n , then A is invertible.
- A matrix that is both upper triangular and symmetric is a diagonal matrix.

• Multiplication by the matrix
$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
 corresponds to a counterclockwise rotation by θ .

• If A is an $m \times n$ matrix, then the domain of the transformation T_A is \mathbb{R}^m .

2. (8 pts) Use the Gauss-Jordan elimination algorithm to solve the linear system.

$$x + 2y - 2z = 3$$

$$2x + 5y - 6z = 8$$

$$x + y + z = 2$$

3. (2 pts) Suppose that the augmented matrix for a linear system with variables x_1, x_2, x_3, x_4 has been reduced to the matrix below using elementary row operations. Write down the solution to the system.

1	-2	0	-1	3
0	0	1	1	5
0	0	0	0	0

4. (10 pts) Let
$$A = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 3 & -2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix}$. Simplify each expression below or explain why it is not possible.

(a)
$$AA^T =$$

(b) $B^2 =$

(c) BA =

(d)
$$\operatorname{tr}(B + B^T) =$$

(e)
$$B^{-1} =$$

5. (5 pts) How many solutions does each matrix equation have? Explain in complete sentences.

(a)
$$\begin{bmatrix} 4 & 1 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \\ 4 \\ 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & -5 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ -1 \\ 0 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 2 & -2 & 0 \\ 0 & 5 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ -2 \\ 0 \\ 0 \end{bmatrix}$$

6. (5 pts) Suppose that A is an n × n symmetric matrix.
(a) Show that A² is symmetric.

(b) Show that $A^2 - A + I$ is symmetric, where I is the $n \times n$ identity matrix.

7. (5 pts) Let
$$A \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
, $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, and $\vec{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.
(a) Find the inverse of A .

(b) Use your answer to part (a) to solve the system $A\vec{x} = \vec{b}$.

8. (5 pts) The linear transformation $T_A : \mathbb{R}^2 \to \mathbb{R}^3$ satisfies

$$T_A(1,0) = (2,1,1)$$
 and $T_A(2,1) = (1,3,1).$

(a) Compute $T_A(0,1)$

(b) What is the standard matrix A for this transformation?