${\bf Department~of~Mathematics-University~of~Tennessee}$ ${\bf Math~251~Matrix~Algebra~I}$

Test 1

Name: Solutions

Time allowed: 50 minutes

Instructions:

- Calculators are not allowed.
- All electronic devices must be put away.
- Answers with insufficient or incorrect working will not receive full credit.
- Simplify answers whenever possible.

Page	Points	Score
2	10	
3	10	
4	10	
5	10	
6	10	
Total:	50	

- 1. (10 pts) Decide whether each statement is TRUE or FALSE. No justification is required.
 - A linear system with more variables than equations has no solutions.

False

• The matrix $\begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & 2 \end{bmatrix}$ is in reduced row echelon form.

True

• If the products AB and BA are both defined, then A and B are square matrices of the same size.

False

• If A and B are invertible matrices of the same size, then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

True

• The matrix $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ is an elementary matrix.

False

• If A is an $n \times n$ matrix that is not invertible, then the linear system $A\vec{x} = \vec{0}$ has infinitely many solutions.

True

• If A is row equivalent to the identity matrix I_n , then A is invertible.

True

• A matrix that is both upper triangular and symmetric is a diagonal matrix.

True

• Multiplication by the matrix $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ corresponds to a counterclockwise rotation by θ .

False

• If A is an $m \times n$ matrix, then the domain of the transformation T_A is \mathbb{R}^m .

False

2. (8 pts) Use the Gauss-Jordan elimination algorithm to solve the linear system.

3. (2 pts) Suppose that the augmented matrix for a linear system with variables x_1, x_2, x_3, x_4 has been reduced to the matrix below using elementary row operations. Write down the solution to the system.

$$\begin{bmatrix} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Let
$$x_2 = s$$
, $x_4 = t$. Then:
 $x_1 = 3 + 2s + t$
 $x_3 = 5 - t$.

4. (10 pts) Let $A = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 3 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix}$. Simplify each expression below or explain why it is not possible

(a)
$$AA^{T} = \begin{bmatrix} 1 & 0 \\ 7 & -1 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 3 & 8 & 13 \end{bmatrix}$$

(b)
$$B^2 = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 10 \end{bmatrix}$$

(c) BA = not possible.

B has 2 columns and A has 3 rows.

The dimensions do not match.

(d)
$$\operatorname{tr}(B+B^T) = \operatorname{tr}\left(\begin{bmatrix} 0 & \frac{1}{3} \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{3} \end{bmatrix}\right) = \operatorname{tr}\left(\begin{bmatrix} 0 & \frac{2}{3} \end{bmatrix}\right) = 0 + 6 = 6$$
.

(e)
$$B^{-1} = \frac{1}{-1} \begin{bmatrix} 3 & -1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ 1 & 0 \end{bmatrix}$$

5. (5 pts) How many solutions does each matrix equation have? Explain in complete sentences.

(a)
$$\begin{bmatrix} 4 & 1 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \\ 4 \\ 0 \end{bmatrix}$$

(a) $\begin{bmatrix} 4 & 1 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \\ 4 \\ 0 \end{bmatrix}$ No solutions.

The third equation says 0=4, so the inconsistent.

(b)
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & -5 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ -1 \\ 0 \end{bmatrix}$$

(b) $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 3 & -5 \\ 0 & 0 & -2 \\ \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ -1 \\ 0 \end{bmatrix}$ The system is consistent and three are no free variables.

(c)
$$\begin{bmatrix} 2 & -2 & 0 \\ 0 & 5 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ -2 \\ 0 \\ 0 \end{bmatrix}$$
 Infinite solutions.

The system is consistent and there is one free variable.

note: for full credit, your explanations should have discussed free variables and consistency.

6. (5 pts) Suppose that A is an $n \times n$ symmetric matrix.

(a) Show that A^2 is symmetric.

$$(A^2)^T = (AA)^T = A^TA^T = AA = A^2$$
.
Thus A^2 is symmetric.

(b) Show that $A^2 - A + I$ is symmetric, where I is the $n \times n$ identity matrix.

$$(A^2 - A + I)^T = (A^2)^T - A^T + I^T = A^2 - A + I.$$
Thus $A^2 - A + I$ is symmetric.

7. (5 pts) Let
$$A \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
, $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, and $\vec{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

(a) Find the inverse of A

(b) Use your answer to part (a) to solve the system $A\vec{x} = \vec{b}$.

$$\vec{\mathcal{H}} = \vec{A} \cdot \vec{b} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$

8. (5 pts) The linear transformation $T_A: \mathbb{R}^2 \to \mathbb{R}^3$ satisfies

$$T_A(1,0) = (2,1,1)$$
 and $T_A(2,1) = (1,3,1)$.

(a) Compute $T_A(0,1)$

(b) What is the standard matrix A for this transformation?

$$A = \left[T_{A}(1,0) \middle| T_{A}(0,1) \right] = \begin{bmatrix} 2 & -3 \\ 1 & 1 \\ 1 & -1 \end{bmatrix}.$$