1 of 6

Department of Mathematics – University of Tennessee

Math 251 Matrix Algebra I

Test 1 Practice

Name: _____

Time allowed: 50 minutes

Instructions:

- Calculators are not allowed.
- All electronic devices must be put away.
- Answers with insufficient or incorrect working will not receive full credit.
- Simplify answers whenever possible.

Page	Points	Score
2	10	
3	10	
4	10	
5	10	
6	10	
Total:	50	

- 1. (10 pts) Decide whether each statement is TRUE or FALSE. No justification is required.
 - Every homogeneous linear system is consistent.

• The matrix
$$\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
 is in row echelon form.

- If A and B are square matrices of the same size, then $(A + B)^2 = A^2 + 2AB + B^2$.
- If AB is defined for matrices A and B, then $(AB)^T = B^T A^T$.
- If A and B are invertible matrices of the same size, then A + B is invertible.
- Every elementary matrix is invertible.
- If A is invertible, and a multiple of the first row of A is added to the second row of A, then the resulting matrix is invertible.
- It is impossible for a system of linear equations to have exactly two solutions.
- The transpose of an upper triangular matrix is upper triangular.
- If \vec{b} is a non-zero vector, then $T(\vec{x}) = \vec{x} + \vec{b}$ is a linear transformation.

2. (8 pts) Use the Gauss-Jordan elimination algorithm to solve the linear system.

$$2x + 6y - 4z = 2$$
$$y + 2z = 1$$
$$x + 5y + 2z = 3$$

3. (2 pts) Suppose that the augmented matrix for a linear system with variables x_1, x_2, x_3, x_4 has been reduced to the matrix below using elementary row operations. Write down the solution to the system.

1	0	-3	-1	2
0	1	1	0	4
0	0	0	0	0

4. (10 pts) Let
$$A = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 0 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ -2 & 2 \end{bmatrix}$. Simplify each expression below or explain why it is not possible.
(a) $A + A^T =$

(b)
$$A^2 =$$

(c)
$$BA =$$

(d)
$$tr(3B) =$$

(e)
$$B^{-1} =$$

5. (6 pts) Consider the matrix equation

$$\begin{bmatrix} 2 & -5 & 8 \\ 0 & 3 & 4 \\ 0 & 0 & k^2 - 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ -6 \\ k - 1 \end{bmatrix}.$$

(a) For which value(s) of k are there an infinite number of solutions? Explain in complete sentences.

- (b) For which value(s) of k is the system inconsistent? Explain in complete sentences.
- (c) For which value(s) of k is there a unique solution? Explain in complete sentences.

6. (4 pts) Find the inverse of the matrix below.

[1 (0 —	2 0	
)	1 () 3	,
) (0 1	0	'
) (0 0) 1	

7. (5 pts) Suppose that the matrix transformation T_A is defined by

$$T_A(x_1, x_2, x_3) = (2x_1 - x_3, 4x_1, x_1 + x_2 + x_3, 5x_3).$$

(a) What are the domain and codomain for the transformation?

(b) What is the standard matrix A for the transformation?

8. (5 pts) Suppose that the matrix A satisfies the equation A^TA = A.
(a) Prove that A is symmetric.

(b) Prove that $A^2 = A$.