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Department of Mathematics – University of Tennessee

Math 251 Matrix Algebra I

Examination Practice

Name:

Time allowed: Two hours

Instructions:

• Calculators are not allowed.

• All electronic devices must be put away.

• Answers with insufficient or incorrect working will not receive full credit.

• Simplify answers whenever possible.

Page Points Score

2 10

3 10

4 10

5 10

6 10

7 10

8 10

9 10

10 10

11 10

Total: 100
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1. (10 pts) Decide whether each statement is TRUE or FALSE. No justification is required.

• A linear system with fewer equations than variables always has an infinite number of solutions.

• If A and B are square matrices of the same size, then tr(AB) = tr(A)tr(B).

• Multiplication by the matrix

1 0

0 −1

 corresponds to a rotation in two-dimensional space.

• A square matrix C is invertible if and only if det (C) = 0.

• If ~u · ~v = ~u · ~w, then ~v = ~w.

• The set of all polynomials of degree 4 is a subspace of the set of all polynomials.

• The vectors (1,−1, 1), (1, 1, 1), and (0, 1, 0) are linearly independent in R3.

• The column space of A is the set of all solutions to the equation A~x = ~b.

• If B is a 3× 5 matrix and rank(B) = 2, then nullity(B) = 3.

• If 0 is an eigenvalue of A, then the columns of A are linearly dependent.
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2. Consider the linear system below in the variables x, y, and z.

x+ 3y − 2z = 1

2x+ 3y + 2z = 5

x+ 4y − 4z = 0

(a) (7 pts) Find the row-reduced echelon form of the augmented matrix for the linear system.

(b) (3 pts) Find the general solution of the linear system.
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3. The linear equations below define a transformation TA between two vector spaces.

w1 = 3x1 − 2x2 + 2x3 − x4

w2 = x1 + 2x2 + 4x4

w3 = 4x1 − 2x3 + 2x4

(a) (2 pts) What are the domain and codomain for TA?

(b) (2 pts) Compute TA(1, 1, 1, 1).

(c) (2 pts) What is the standard matrix A for this transformation?

4. (4 pts) Find the inverse of the matrix B =


1 −1 2

1 1 4

−1 1 −1

 or show that B is not invertible.
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5. (10 pts) Let A =


1 0 0

0 2 0

0 0 3

, B =

2 −3 5

1 0 4

, ~u = (1,−2, 2), and ~v = (2, 4,−1). Compute each of

the following or explain why it is not possible.

(a) det (A) =

(b) AB =

(c) A~v =

(d) ~u× ~v =

(e) ‖~u‖ =
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6. (5 pts) Find the determinant of the matrix C =


2 1 0 −1

3 2 1 0

4 0 0 2

1 0 1 0

.

7. (5 pts) Find the projection of the vector ~u = (1, 4, 2) onto the vector ~v = (1, 0, 1).
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8. (4 pts) Find an equation for the plane through the point ~x0 = (2,−3, 1) and orthogonal to the vector
~n = (1, 1, 1), and determine whether the plane contains the origin.

9. (6 pts) Let V be the set of all pairs ~v = (a, b) of real numbers with the following operations:

(a, b) + (c, d) = (a+ c, 1),

k(a, b) = (k2a, k2b).

(a) Does V satisfy axiom 3 for vector spaces? Prove or give a counterexample.

(b) Does V satisfy axiom 9 for vector spaces? Prove or give a counterexample.
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10. Consider the 2× 2 matrices below.

M1 =

1 0

0 0

 , M2 =

1 1

0 0

 , M3 =

1 0

1 0

 , M4 =

1 0

0 1


(a) (6 pts) Show that the set {M1,M2,M3,M4} is a basis for M22.

(b) (4 pts) Find the coordinates of M =

 1 −1

−1 1

 relative to the basis {M1,M2,M3,M4}.
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11. The matrices A and B below are row equivalent.

A =


1 1 1 2 3 4

0 1 −1 1 1 4

2 0 4 3 5 2

3 2 4 6 9 10

 , B =


1 0 2 0 1 −2

0 1 −1 0 1 2

0 0 0 1 1 2

0 0 0 0 0 0


(a) (2 pts) Find a basis for the row space of A.

(b) (3 pts) Find a basis for the column space of A.

(c) (3 pts) Find a basis for the null space of A.

(d) (2 pts) Find the rank of A and the nullity of A.
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12. Consider the matrix A =

2 1

3 0

.

(a) (3 pts) Find the characteristic polynomial of A.

(b) (2 pts) Find the eigenvalues of A.

(c) (5 pts) Find an eigenvector corresponding to each eigenvalue in part (b).
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13. Suppose that the matrix B has eigenvalues λ1 = 0 with corresponding eigenvector ~v1 =

 1

−1

 and

λ2 = 2 with corresponding eigenvector ~v2 =

−1

2

.

(a) (4 pts) Find an invertible matrix P and a diagonal matrix D such that B = PDP−1.

(b) (3 pts) Find the matrix B.

(c) (3 pts) Compute B4.


