Section 5.1 Eigenvalues and Eigenvectors Objectives.

- Introduce eigenvalues and eigenvectors for a matrix or matrix transformation.
- Find eigenvalues, eigenvectors, and eigenspaces.

Suppose that \vec{x} is a non-zero vector and A is a square matrix. If $A\vec{x} = \lambda \vec{x}$ for some scalar λ , then λ is an eigenvalue of A and \vec{x} is an eigenvector of A corresponding to λ .

Example 1. Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$. Compute $A \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $A \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, and $A \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Which of these vectors is an eigenvector of A? What are the eigenvalues?

Loosely speaking, an eigenvector of an $n \times n$ matrix A (or of the matrix operator T_A) is a direction in \mathbb{R}^n that is unchanged when multiplying by A. That is, $\vec{x} \neq \vec{0}$ is an eigenvector of A if \vec{x} and $A\vec{x}$ are parallel.

Theorem. If A is a square matrix, then λ is an eigenvalue of A if and only if det $(\lambda I - A) = 0$.

Proof.

Example 2. Use the theorem above to find the eigenvalues of $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$.

Strategy. To find the eigenvalues of *A*:

Example 3. Find the eigenvalues of $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 1 & 2 \\ 0 & 3 & 1 \end{bmatrix}$.

The eigenvalues of a triangular matrix can be found 'by inspection' (that is, without solving the characteristic polynomial).

Theorem. If A is triangular, then the eigenvalues of A are the entries on the main diagonal.

Example 4. Find the eigenvalues of each matrix.

$\begin{bmatrix} 3\\0\\0\end{bmatrix}$	$9\\-7\\0$	$\begin{bmatrix} -4\\5\\4 \end{bmatrix}$	$\begin{bmatrix} \frac{1}{2} & 0 & 0\\ -1 & \frac{3}{2} & 0\\ 1 & -1 & 2 \end{bmatrix}$	$\begin{bmatrix} a \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ b \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ c \\ 0 \end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ d\end{array}$	
				Γu	U	0	[a]	

Theorem. If A is a square matrix, then the following statements are equivalent.

1. λ is an eigenvalue of A.

2. λ is a solution of the characteristic equation det $(\lambda I - A) = 0$.

3. The system $(\lambda I - A)\vec{x} = \vec{0}$ has nontrivial solutions.

4. There is a nonzero vector \vec{x} such that $A\vec{x} = \lambda \vec{x}$.

Now that we know how to find eigenvalues for a matrix, we turn our attention to finding the eigenvectors corresponding to each eigenvalue. If λ is an eigenvalue of A, then the eigenvectors corresponding to λ are the nonzero vectors \vec{x} such that $(\lambda I - A)\vec{x} = \vec{0}$. This solution space is the eigenspace corresponding to λ .

Example 5. Find the eigenspaces of the matrix $A = \begin{bmatrix} -1 & 3 \\ 2 & 0 \end{bmatrix}$.

Example 6. Find the eigenspaces of the matrix $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.

Theorem. The square matrix A is invertible if and only if $\lambda = 0$ is not an eigenvalue of A.

Example 7. Find the eigenvalues of $A = \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix}$.