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Section 4.7 Change of Basis
Objectives.
o Introduce the ‘change of basis problem’.
e Define the transition matrix for a change of basis.

e Find the transition matrix for a change of basis.

Let B = {v1,...,Un} be a basis for a vector space V, and let ¥ be a vector in V. Recall the definition of the
coordinate vector for ¥ relative to B: .
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The set of all such coordinate vectors for V is a function from V' to R™ called the coordinate map relative to B.
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Sometimes we may want to change from one basis B for V' to a different basis B’. Thus we would like to
know how [0 and [] 5, are related.

Suppose that B = {iy, iz} and B’ = {if}, i3} are both bases for V, and that ¥ is a vector in V.
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Ehange of Basis Problem. Suppose that B = {iy,s,...,4,} is the old basis for V, and B’ =
{a@,, @, ..., i@,} is the new basis for V. Then the coordinate vectors for a vector ¢ in V satisfy

[1713/ = Pp_.p [ﬂB

where Pp_,p = [[l1]p [fa]p -+ [dn]g/] is the transition matrix from B to B’.

The columns of the transition matrix are the coordinate vectors of the old basis relative to the new basis.

Example 1. Consider the bases B = {(1,0),(0,1)} and B’ = {(1,1),(1,2)} for R2.

(a) Find the transition matrix Pp_,p from B to B'.
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(b) Find the transition matrix Pgr_,p from B’ to B. [ ]
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(c) Suppose that [v]5 = [_42} Find [7] 5.
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Applying a change of basis from B to B’ and then a change of basis from B’ to B leaves coordinate vectors
unchanged.
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This means that the transition matrices Pg_, 5r and Pp/_, g are inverses of each other.

Theorem. If P is the transition matrix from a basis B to a basis B’ in the vector space V, then P is invertible
and P! is the transition matrix from B’ to B.

We can find a transition matrix by row-reducing the matrix that has the vectors from each basis as columns.
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Example 2. Find the transition matrix Pg_, g/ for the bases in Example 1.
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Theorem. Let B = {iy, s, ..., Un} be any basis for R™ and let S = {€1,én,...,€En} be the standard basis
for R™. Then the transition matrix from B to S is

l [
I 2

Pp_,5 = [h|i| - |i] -

In particular, if A = [#|%2] - |U,] is an invertible matrix, then A is a transition matrix from the basis
B = {#,%,...,U,} for R™ to the standard basis for R".
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