Section 4.7 Change of Basis

Objectives.

- Introduce the 'change of basis problem'.
- Define the transition matrix for a change of basis.
- Find the transition matrix for a change of basis.

Let $B = \{\vec{v}_1, \dots, \vec{v}_n\}$ be a basis for a vector space V, and let \vec{v} be a vector in V. Recall the definition of the coordinate vector for \vec{v} relative to B:

$$\vec{V} = c_1 \vec{V}_1 + c_2 \vec{V}_2 + \cdots + c_n \vec{V}_n \iff \begin{bmatrix} \vec{V} \end{bmatrix}_{\vec{B}} = (c_1, c_2, \cdots, c_n) = \begin{bmatrix} c_2 \\ \vdots \\ c_n \end{bmatrix}$$

The set of all such coordinate vectors for V is a function from V to \mathbb{R}^n called the coordinate map relative to B.

i.e. for each vector
$$\vec{v}$$
 in V and each basis B for V , there is a coordinate vector $[\vec{v}]_B$ in \mathbb{R}^n .

Sometimes we may want to change from one basis B for V to a different basis B'. Thus we would like to know how $[\vec{v}]_B$ and $[\vec{v}]_{B'}$ are related.

Suppose that $B=\{\vec{u}_1,\vec{u}_2\}$ and $B'=\{\vec{u}_1',\vec{u}_2'\}$ are both bases for V, and that \vec{v} is a vector in V.

Let
$$\begin{bmatrix} \vec{u}_1 \end{bmatrix}_{g'} = \begin{bmatrix} a \\ b \end{bmatrix}$$
, $\begin{bmatrix} \vec{u}_2 \end{bmatrix}_{g'} = \begin{bmatrix} c \\ d \end{bmatrix}$, and $\begin{bmatrix} \vec{v} \end{bmatrix}_{g} = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix}$.

Then:
$$\vec{u}_1 = a \vec{u}_1' + b \vec{u}_2'$$
 and $\vec{u}_2 = c \vec{u}_1' + d \vec{u}_2'$, so $\vec{v} = k_1 \vec{u}_1 + k_2 \vec{u}_2 = k_1 (a \vec{u}_1' + b \vec{u}_2') + k_2 (c \vec{u}_1' + d \vec{u}_2') = (k_1 a + k_2 c) \vec{u}_1' + (k_1 b + k_2 d) \vec{u}_2'$

Thus: $[\vec{v}]_{g'} = \begin{bmatrix} k_1 a + k_2 c \\ k_1 b + k_2 d \end{bmatrix} = \begin{bmatrix} a & c \\ b & d \end{bmatrix} [\vec{v}]_{g}$.

transition matrix from B to B'

$$P_{B \to B'} = \left[\left[\vec{u}, \right]_{B'}, \left[\vec{u}_{2} \right]_{B'} \right]$$

Change of Basis Problem. Suppose that $B=\{\vec{u}_1,\vec{u}_2,\ldots,\vec{u}_n\}$ is the old basis for V, and $B'=\{\vec{u}_1',\vec{u}_2',\ldots,\vec{u}_n'\}$ is the new basis for V. Then the coordinate vectors for a vector \vec{v} in V satisfy

$$[\vec{v}]_{B'} = P_{B \to B'} [\vec{v}]_B$$

where $P_{B \to B'} = \begin{bmatrix} [\vec{u}_1]_{B'} & [\vec{u}_2]_{B'} & \cdots & [\vec{u}_n]_{B'} \end{bmatrix}$ is the <u>transition matrix from B to B'</u>.

The columns of the transition matrix are the coordinate vectors of the old basis relative to the new basis.

Example 1. Consider the bases $B = \{(1,0),(0,1)\}$ and $B' = \{(1,1),(1,2)\}$ for \mathbb{R}^2 .

(a) Find the transition matrix $P_{B \to B'}$ from B to B'.

Thus:
$$P_{B \to B'} = \begin{bmatrix} \vec{u}_1 \\ \vec{u}_2 \end{bmatrix}_{B'} \begin{bmatrix} \vec{u}_2 \\ \vec{u}_3 \end{bmatrix}_{B'} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}_{A'}$$

Thus: $P_{B \to B'} = \begin{bmatrix} \vec{u}_1 \\ \vec{u}_2 \end{bmatrix}_{B'} \begin{bmatrix} \vec{u}_2 \\ \vec{u}_3 \end{bmatrix}_{B'} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}_{A'}$

(b) Find the transition matrix $P_{B'\to B}$ from B' to B.

$$\vec{u}_1' = (1,1) = (1,0) + (0,1) = \vec{u}_1 + \vec{u}_2, \text{ so } \left[\vec{u}_1'\right]_g = \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$

$$\vec{u}_2' = (1,2) = \cdots = \vec{u}_1 + 2\vec{u}_2, \text{ so } \left[\vec{u}_2'\right]_g = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

Thus:
$$P_{B'\to B} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
.

(c) Suppose that $[\vec{v}]_B = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$. Find $[\vec{v}]_{B'}$.

$$\begin{bmatrix} \vec{v} \end{bmatrix}_{B'} = P_{B \to B'} \begin{bmatrix} \vec{v} \end{bmatrix}_{B} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -2 \\ 4 \end{bmatrix} = \begin{bmatrix} -8 \\ 6 \end{bmatrix}.$$

Applying a change of basis from B to B' and then a change of basis from B' to B leaves coordinate vectors unchanged.

i.e.
$$\begin{bmatrix} \vec{v} \end{bmatrix}_{g} = P_{g' \to g} \begin{bmatrix} \vec{v} \end{bmatrix}_{g'} = P_{g' \to g} \begin{pmatrix} P_{g \to g'} \begin{bmatrix} \vec{v} \end{bmatrix}_{g} \end{pmatrix}$$

$$= \begin{pmatrix} P_{g' \to g} & P_{g \to g'} \end{pmatrix} \begin{bmatrix} \vec{v} \end{bmatrix}_{g} = \mathbf{I} \begin{bmatrix} \vec{v} \end{bmatrix}_{g},$$
So $P_{g' \to g} & P_{g \to g'} = \mathbf{I}.$

This means that the transition matrices $P_{B o B'}$ and $P_{B' o B}$ are inverses of each other.

Theorem. If P is the transition matrix from a basis B to a basis B' in the vector space V, then P is invertible and P^{-1} is the transition matrix from B' to B.

We can find a transition matrix by row-reducing the matrix that has the vectors from each basis as columns.

Example 2. Find the transition matrix $P_{B\to B'}$ for the bases in Example 1.

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{bmatrix} \xrightarrow{R_1 \to R_1 - R_2} \begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -1 & 1 \end{bmatrix}$$
Thus $P_{R \to R'} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$.

<u>Theorem.</u> Let $B = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$ be any basis for \mathbb{R}^n and let $S = \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ be the standard basis for \mathbb{R}^n . Then the transition matrix from B to S is

$$P_{B\to S} = \left[\vec{u}_1 | \vec{u}_2 | \cdots | \vec{u}_n \right].$$

In particular, if $A = \begin{bmatrix} \vec{v}_1 | \vec{v}_2 | \cdots | \vec{v}_n \end{bmatrix}$ is an invertible matrix, then A is a transition matrix from the basis $B = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n to the standard basis for \mathbb{R}^n .