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Section 4.6 Dimension

Objectives.

e Define the dimension of a finite-dimensional vector space.

e Relate dimension to span and linear independence.

|Theorem. Every basis for a finite-dimensional vector space V' contains the same number of vectors.

The number of vectors in a basis for the finite-dimensional vector space V is called the dimension of V', and
is denoted by dim V.
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Theorem. Let V be a finite-dimensional vector space with dim V' = n.

1. If W is a subset of V that contains more than n vectors, then W is linearly dependent.

2. If W is a subset of V that contains fewer than n vectors, then W does not span V.

Example 2. Suppose that S = {#h,¥2,...,7,} is a linearly independent set of vectors in a vector space V.
What is dim (span(S))? Why?
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Example 3. Consider the linear system below. (This is Example 5 from the Section 1.2 lecture notes.)

zq + 3z — 223 + 215 =0
221 + 639 — By — 224 + 425 — 316 =0
5xg + 10x4 + 15z =0

221 + 6x9 4+ 8z4 +4z5 + 182 =0

The general solution to this system is

T =-3r—4s—2t, xy=7r, =x3=—28, T4=5, x5=1, Te=0.

(a) Write the solution in vector form.

K = (-3c-4s-2¢, 7, =25 s, ¢, 0)
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(b) Find a basis for the solution space of the system.
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(c) What is the dimension of the solution space?
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Theorem. Let S be a set of vectors in a vector space V. /

1. If S is linearly independent, and @ is not in span(S), then S U {4} is linearly independent.
.e. G.Mhs“\lec"’f OMI‘M S'PGV\(S) does Mt c,!‘ ll'vx(‘“r \‘HAIPMM .
2. [f #isin S, and ¥ can be written as a (nonzero) linear combination of other vectors in .S, then

ve V . S i
span(S) = span(S — {¢'}). reene v

ie. rew\o\ﬁv\g ‘l-wl3 JLP..A';J' w_c_"ors does gg_"‘ amz\L S’Pav\(S').
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Theorem. Let V be a vector space with dim V = n, and let S be a set of n vectors in V.
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1. S is a basis for V if and only if S is linearly independent.

2. Sis a basis for V if and only if S spans V.

Example 5. Explain why each set of vectors is a basis for the given vector space.
(a) @ = (1,4) and @ = (3,—2) in R
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(b) % = (1,0,2), % = (—1,0,1), and 73 = (2,—2,3) in R®
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Theorem. Let V be a vector space with dimV = n, and let S be a set of vectors in V.

1. If S spans V but is not a basis for V, then S can be reduced to a basis for V' by removing some vectors.

2. If S is linearly independent but is not a basis for V, then .S can be enlarged to a basis for V' by adding
some vectors.

Example 6. (a) Find a subset of S = {(1,—1),(~1,1),(1,1)} that is a basis for R?,

&M(‘Rz)-.z, So we weed oo veekors th S b QM“ basts
'ﬂ.n, vw(‘ers ('.") and C‘:') are I"qulj Mﬁl-('uy\o(mt

'n\u\s Z(l,—l)'(l”)} s a basts Qr "Zt
wer FCu0, 00 5 ke e bes e Y bud
S0, CUE 5wk a b for 2 (why?)

(b) Enlarge the set § = {(1,1,0),(1,0,—1)} to a basis for R®.
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Theorem. If W is a subspace of a finite-dimensional vector space V/, then:

1. W is finite-dimensional.
2. dimW <dimV.

3. W=V ifand only if dimW =dimV.




