Section 4.6 Dimension

Objectives.

- Define the dimension of a finite-dimensional vector space.
- Relate dimension to span and linear independence.

Theorem. Every basis for a finite-dimensional vector space V contains the same number of vectors.

The number of vectors in a basis for the finite-dimensional vector space V is called the <u>dimension</u> of V, and is denoted by dim V.

Example 1. What is the dimension of each vector space?

(a) \mathbb{R}^n

(b) P_n

(c) M_{mn}

<u>Theorem</u>. Let V be a finite-dimensional vector space with $\dim V = n$.

1. If W is a subset of V that contains more than n vectors, then W is linearly dependent.

2. If W is a subset of V that contains fewer than n vectors, then W does not span V.

Example 2. Suppose that $S = {\vec{v_1}, \vec{v_2}, \dots, \vec{v_r}}$ is a linearly independent set of vectors in a vector space V. What is dim (span(S))? Why?

Example 3. Consider the linear system below. (This is Example 5 from the Section 1.2 lecture notes.)

 $x_1 + 3x_2 - 2x_3 + 2x_5 = 0$ $2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 = 0$ $5x_3 + 10x_4 + 15x_6 = 0$ $2x_1 + 6x_2 + 8x_4 + 4x_5 + 18x_6 = 0$

The general solution to this system is

 $x_1 = -3r - 4s - 2t$, $x_2 = r$, $x_3 = -2s$, $x_4 = s$, $x_5 = t$, $x_6 = 0$.

(a) Write the solution in vector form.

(b) Find a basis for the solution space of the system.

(c) What is the dimension of the solution space?

Theorem. Let S be a set of vectors in a vector space V.

1. If S is linearly independent, and \vec{v} is not in span(S), then $S \cup {\vec{v}}$ is linearly independent.

2. If \vec{v} is in S, and \vec{v} can be written as a (nonzero) linear combination of other vectors in S, then

 $\operatorname{span}(S) = \operatorname{span}(S - \{\vec{v}\}).$

Example 4. Explain why the polynomials $p(x) = 1 + x^2$, $q(x) = 2 + x^2$, $r(x) = x^3$ are linearly independent.

<u>Theorem</u>. Let V be a vector space with $\dim V = n$, and let S be a set of n vectors in V.

- 1. S is a basis for V if and only if S is linearly independent.
- 2. S is a basis for V if and only if S spans V.

Example 5. Explain why each set of vectors is a basis for the given vector space.

(a) $\vec{v}_1 = (1,4)$ and $\vec{v}_2 = (3,-2)$ in \mathbb{R}^2

(b) $\vec{v}_1 = (1,0,2)$, $\vec{v}_2 = (-1,0,1)$, and $\vec{v}_3 = (2,-2,3)$ in \mathbb{R}^3

<u>Theorem</u>. Let V be a vector space with $\dim V = n$, and let S be a set of vectors in V.

- 1. If S spans V but is not a basis for V, then S can be reduced to a basis for V by removing some vectors.
- 2. If S is linearly independent but is not a basis for V, then S can be enlarged to a basis for V by adding some vectors.

Example 6. (a) Find a subset of $S = \{(1, -1), (-1, 1), (1, 1)\}$ that is a basis for \mathbb{R}^2 .

(b) Enlarge the set $S = \{(1, 1, 0), (1, 0, -1)\}$ to a basis for \mathbb{R}^3 .

Theorem. If W is a subspace of a finite-dimensional vector space V, then:

- 1. W is finite-dimensional.
- 2. dim $W \leq \dim V$.
- 3. W = V if and only if $\dim W = \dim V$.