Section 4.5 Coordinates and Basis

Objectives.

- Introduce the idea of a basis for a vector space.
- Find coordinates for a vector relative to a given basis.

A vector space V is <u>finite-dimensional</u> if there is a finite set of vectors S that spans V. Otherwise, V is <u>infinite-dimensional</u>.

Let $S = {\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}}$ be a set of vectors in a finite-dimensional vector space V. We say that S is a <u>basis</u> for V if the following two conditions hold.

- S spans V
- S is linearly independent

Example 1. The set $S = \{\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}\}$ is a basis for \mathbb{R}^n .

Example 2. The set $S = \{1, x, x^2, \dots, x^n\}$ is a basis for P_n .

Example 3. The vector space P_{∞} is infinite-dimensional.

Example 4. Show that the vectors $\vec{v}_1 = (1, 2, 1)$, $\vec{v}_2 = (2, 9, 0)$, $\vec{v}_3 = (3, 3, 4)$ form a basis for \mathbb{R}^3 .

Example 5. Show that the matrices $M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $M_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $M_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $M_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ form a basis for the vector space M_{22} .

<u>Theorem.</u> Let $S = {\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}}$ be a basis for the vector space V. Then every vector \vec{v} in V can be written as

 $\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n$

in exactly one way.

Proof.

The numbers c_1, c_2, \ldots, c_n in this theorem are called the <u>coordinates of \vec{v} relative to the basis S</u>. The vector (c_1, c_2, \ldots, c_n) is called the <u>coordinate vector of \vec{v} relative to the basis S</u>, and is denoted by

 $(\vec{v})_S = (c_1, c_2, \dots, c_n).$

Example 6. Consider the standard basis $S = {\vec{e_1}, \vec{e_2}, \vec{e_3}}$ for \mathbb{R}^3 . What is the coordinate vector for $\vec{v} = (a, b, c)$ relative to the basis S?

Example 7. Consider the basis $S = \{(1,0), (1,2)\}$ for \mathbb{R}^2 . What is the coordinate vector for $\vec{v} = (-1,4)$ relative to the basis S?

Example 8. Find the coordinate vector for the polynomial $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ relative to the standard basis for P_n .

Example 9. Find the coordinate vector for the matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ relative to the standard basis for M_{22} .

Example 10. Recall from Example 4 that $\vec{v}_1 = (1, 2, 1)$, $\vec{v}_2 = (2, 9, 0)$, $\vec{v}_3 = (3, 3, 4)$ form a basis for \mathbb{R}^3 .

(a) Find the coordinate vector for $\vec{v} = (5, -1, 9)$ relative to the basis $S = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$.

(b) Find \vec{w} given that $(\vec{w})_S = (-1, 3, 2)$.