Section 4.2 Subspaces

Objectives.

- Introduce the notion of a subspace of a vector space.
- Determine whether a subset of a vector space is a subspace.
- Discuss some subspaces of real vector spaces.

Recall that a vector space is a set V that generalizes the vector arithmetic of \mathbb{R}^n – vectors in V can be added or scaled without leaving V, and these operations are consistent with the usual rules of arithmetic.

Suppose that W is a set of vectors in a vector space V. We call W a subspace of V if W is a vector space with the operations of addition and scalar multiplication from V.

Example 1. If V is any vector space, and $\vec{0}$ is the zero vector in V, then $W = \{\vec{0}\}$ is a subspace of V.

Six of the ten axioms for a vector space are satisfied by every subset of vectors. The four axioms that need to be checked are:

Subspace Test. If W is a nonempty set of vectors in a vector space V, then W is a subspace of V if and only if both of the following conditions are satisfied.

1. If \vec{u} and \vec{v} are in W, then $\vec{u} + \vec{v}$ is in W.

2. If \vec{u} is in V and k is a scalar, then $k\vec{u}$ is in V.

Strategy. To show that W is a subspace of V:

Example 2. If W is a line through the origin in \mathbb{R}^n , then W is a subspace of \mathbb{R}^n .

Example 3. If W is a plane through the origin in \mathbb{R}^3 , then W is a subspace of \mathbb{R}^3 .

Example 4. The set W of all points (x, y) in \mathbb{R}^2 with $x \ge 0$ and $y \ge 0$ is <u>not</u> a subspace of \mathbb{R}^2 .

Subspaces of \mathbb{R}^2 .

Subspaces of \mathbb{R}^3 .

Recall that M_{nn} is the vector space of all $n \times n$ matrices of real numbers.

Example 5. Let W be the set of all symmetric $n \times n$ matrices.

(a) Discuss why W is a subspace of M_{nn} .

(b) What are some other subspaces of M_{nn} ?

Example 6. Let W be the set of all invertible 2×2 matrices.

(a) Find two matrices A and B in W such that A + B is not in W. (What does this example show?)

(b) Find a matrix A and a scalar k such that kA is not in W. (What does this example show?)

Note: more generally, the set of all invertible $n \times n$ matrices is not a subspace of M_{nn} .

Recall that $F(-\infty, \infty)$ is the set of all (real-valued) functions defined on the interval $(-\infty, \infty)$. **Example 7.** The set $C(-\infty, \infty)$ of all *continuous* functions defined on $(-\infty, \infty)$ is a subspace of $F(-\infty, \infty)$.

Example 8. The following sets of functions are subspaces of $F(-\infty,\infty)$.

- (a) $C^1(-\infty,\infty)$
- (b) $C^m(-\infty,\infty)$
- (c) $C^{\infty}(-\infty,\infty)$

A polynomial of degree n is a function that can be written

$$p(x) = a_0 + a_1 x + \dots + a_n x^n,$$

where a_0, a_1, \ldots, a_n are constants and $a_n \neq 0$.

Example 9. The set P_{∞} of all polynomials is a subspace of $F(-\infty,\infty)$.

Example 10. The set P_n of all polynomials with degree at most n is a subspace of $F(-\infty,\infty)$.

Example 11. Determine whether each set of matrices is a subspace of M_{22} .

(a) The set U of all matrices of the form $\begin{bmatrix} x & 2x \\ 0 & y \end{bmatrix}$.

(b) The set W of all 2×2 matrices A such that $A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Example 12. Determine whether each set of polynomials is a subspace of P_2 .

(a) The set U of all polynomials of the form $p(x) = 1 - ax + ax^2$.

(b) The set W of all polynomials such that p(3) = 0.

<u>**Theorem.**</u> If W_1, W_2, \ldots, W_k are all subspaces of a vector space V, then the set W of all vectors in the intersection of these subspaces is a subspace of V.

<u>Theorem.</u> Let A be an $m \times n$ matrix. The set of all solutions \vec{x} to the homogeneous linear system $A\vec{x} = \vec{0}$ is a subspace of \mathbb{R}^n .

The solution space in the previous theorem is called the <u>kernel</u> of the linear transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$.

<u>**Theorem.**</u> Let A be an $m \times n$ matrix. Then the kernel of the linear transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is a subspace of \mathbb{R}^n .

Example 13. Describe the geometry of the solution space for each homogeneous linear system.

	1	-2	3		x		0	
(a)	2	-4	6		y	=	0	
	3	-6	9	L	z		0	

- (b) $\begin{bmatrix} 1 & 2 & -3 \\ -3 & 7 & -8 \\ -2 & 4 & -6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
- (c) $\begin{bmatrix} 1 & 2 & -3 \\ -3 & 7 & -8 \\ 4 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
- (d) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$