## Section 3.4: The Geometry of Linear Systems Objectives.

- Write vector and parametric equations for lines and planes in  $\mathbb{R}^n$ .
- Express a line segment in vector form.

In Section 3.3, we saw how the dot product allows us to write vector and scalar equations for a line in  $\mathbb{R}^2$  or a plane in  $\mathbb{R}^3$ . Specifically:

ullet the line in  $\mathbb{R}^2$  through the point  $ec{x}_0=(x_0,y_0)$  and normal to the vector  $ec{n}=(a,b)$  is

$$\vec{n} \cdot (\vec{x} - \vec{z}_0) = 0 \quad \text{or} \quad a(x - x_0) + b(y - y_0) = 0.$$

ullet the plane in  $\mathbb{R}^3$  through the point  $ec{x}_0=(x_0,y_0,z_0)$  and normal to the vector  $ec{n}=(a,b,c)$  is

$$\vec{n} \cdot (\vec{z} - \vec{z}_0) = 0$$
 or  $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$ .

In this section, we will explore how the equation of a line in higher dimensions can be written using a point on the line and a direction parallel to the line, and how the equation of a plane in higher dimensions can be written using a point on the plane and two (non-parallel!) directions parallel to the plane.

Suppose that  $\vec{x}$  is a general point on the line through the point  $\vec{x}_0$  and parallel to the vector  $\vec{v}$ .



**Example 1.** Let L be the line in  $\mathbb{R}^3$  through the point  $\vec{x}_0=(3,-1,5)$  and parallel to the vector  $\vec{v}=(-2,1,2)$ .

(a) Find a vector equation for the line L.

$$\vec{z} = \vec{z}_0 + t \vec{v} = (3,-1,5) + t(-2,1,2) = (3-2t,-1+t,5+2t)$$

(b) Find parametric equations for the line L.

$$x = 3 - 2t$$
 ,  $y = -1 + t$  ,  $z = 5 + 2t$ 

Suppose  $\vec{x}$  is a general point on the plane through the point  $\vec{x}_0$  and parallel to the (non-parallel) vectors  $\vec{v}_1$  and  $\vec{v}_2$ .



A vector  $\vec{z} - \vec{z}_0$  in the plane is a linear combination of  $\vec{v}_1$  and  $\vec{v}_2$ 

$$\Rightarrow \vec{\varkappa} = \vec{\varkappa}_0 + t_1 \vec{v}_1 + t_2 \vec{v}_2.$$

**Example 2.** Consider the point  $\vec{x}_0=(1,4,0,-3)$  in  $\mathbb{R}^4$  and the vectors  $\vec{v}_1=(2,-1,1,0)$  and  $\vec{v}_2=(3,-6,5,2)$ .

(a) Find a vector equation for the plane through  $\vec{x}_0$  and parallel to both  $\vec{v}_1$  and  $\vec{v}_2$ .

$$\vec{z} = \vec{x}_0 + t_1 \vec{v}_1 + t_2 \vec{v}_2 = (1, 4, 0, -3) + t_1(2, -1, 1, 0) + t_2(3, -6, 5, 2)$$

(b) Find parametric equations for the plane in part (a).

$$w = 1 + 2t_1 + 3t_2$$
,  $x = 4 - t_1 - 6t_2$ ,  $y = t_1 + 5t_2$ ,  $z = -3 + 2t_2$ .

**Example 3.** The scalar equation x + 2y + 3z = 4 represents a plane in  $\mathbb{R}^3$ .

(a) Find parametric equations for the plane. -> ux two variables as parameters!"

Let 
$$y = t_1$$
 and  $z = t_2$ . Then  $x = 4 - 2t_1 - 3t_2$ .

(b) Find a vector equation for the plane.

$$\vec{z} = (4-2t_1-3t_2, t_1, t_2) = (4,0,0) + t_1(-2,1,0) + t_2(-3,0,1)$$

Any two distinct points  $\vec{x}_0$  and  $\vec{x}_1$  in  $\mathbb{R}^n$  determine a unique line:



$$\vec{z} = \vec{z}_0 + t (\vec{z}_1 - \vec{z}_0)$$

or

Lie.  $\vec{v} = \vec{z}_1 - \vec{z}_0$  is a

 $\vec{z} = (1-t) \vec{z}_0 + t \vec{z}_1$  direction parallel to the line.

**Example 4.** Consider the two points  $\vec{x}_0 = (1,-1)$  and  $\vec{x}_1 = (0,3)$  in  $\mathbb{R}^2$ .

(a) Find a vector equation for the line through  $\vec{x}_0$  and  $\vec{x}_1$ .

$$\vec{z} = \vec{z}_0 + t(\vec{z}_1 - \vec{z}_0) = (1, -1) + t(0 - 1, 3 - (-1)) = (1, -1) + t(-1, 4)$$

(b) Write a scalar equation for the line in part (a).

From 
$$x = 1-t$$
 and  $y = -1+4t$ , we have  $t = 1-x$  and  $4t = 1+y$ .  
Thus  $4(1-x) = 1+y$ , or  $y = 3-4x$ .



To describe the line segment connecting two points  $\vec{x}_0$  and  $\vec{x}_1$  in  $\mathbb{R}^n$ , we can restrict the values of the parameter t to the interval [0,1]:



$$\vec{\lambda} = \vec{\lambda}_0 + t(\vec{\lambda}_1 - \vec{\lambda}_0) , \quad 0 \le t \le 1$$

$$\vec{\lambda} = (1 - t)\vec{\lambda}_0 + t\vec{\lambda}_1 , \quad 0 \le t \le 1$$

**Example 5.** Consider the two points  $\vec{x}_0 = (1, -4, -2, 5)$  and  $\vec{x}_1 = (4, -2, 7, 2)$ .

(a) Find an equation for the line segment from  $\vec{x}_0$  to  $\vec{x}_1$ .

$$\vec{z} = (1-t)(1,-4,-7,5) + t(4,-7,7,2), 0 \le t \le 1.$$

(b) Find the point on this line segment for which the distance to  $\vec{x}_0$  is twice the distance to  $\vec{x}_1$ .



• use 
$$t = \frac{2}{3}$$
 (i.e.  $\frac{2}{3}$  of distance from  $\vec{x}_0$  to  $\vec{x}_1$ )
$$\vec{z} = \left(1 - \frac{2}{3}\right)\left(1, -4, -2, 5\right) + \frac{2}{3}\left(4, -2, 7, 2\right)$$

$$= \left(\frac{1}{3}, -\frac{4}{3}, -\frac{2}{3}, \frac{5}{3}\right) + \left(\frac{9}{3}, -\frac{4}{3}, \frac{14}{3}, \frac{4}{3}\right)$$

Recall that a homogeneous linear equation has the form

$$a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = 0$$
or:  $\vec{a} \cdot \vec{x} = 0$ , where  $\vec{a} = (a_1, a_2, ..., a_n)$  and  $\vec{x} = (x_1, x_2, ..., x_n)$ .

Notice from this that every vector that satisfies a homogeneous linear equation is orthogonal to the coefficient vector. In particular, any solution to the matrix equation  $A\vec{x} = \vec{0}$  is orthogonal to every row of the matrix A.

**Theorem.** If A is an  $m \times n$  matrix, then the set of solutions to the homogeneous linear system  $A\vec{x} = \vec{0}$  consists of all vectors in  $\mathbb{R}^n$  that are orthogonal to every row of A.

## **Example 6.** The linear system

$$\begin{bmatrix} 1 & 5 & -10 & 0 & 2 \\ 3 & -2 & 0 & 2 & 1 \\ 4 & 2 & 2 & -3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

has solution  $x_1 = -2t$ ,  $x_2 = 2s$ ,  $x_3 = s + t$ ,  $x_4 = 2s$ ,  $x_5 = 6t$ . Show that the vector

$$\vec{x} = (-2t, 2s, s+t, 2s, 6t)$$
  $\iff$  solutions for system!!

is orthogonal to every row of the coefficient matrix for the system.

$$\vec{r}_1 \cdot \vec{z} = (1, 5, -10, 0, 2) \cdot (-2t, 2s, s+t, 2s, 6t)$$

$$= -2t + 105 + -10(s+t) + 0(2s) + 2(6t)$$

$$= -2t + 105 - 105 - 10t + 12t = 0.$$

$$\vec{r}_2 \cdot \vec{z} = (3, -2, 0, 2, 1) \cdot (-2t, 2s, s+t, 2s, 6t)$$

$$= 3(-2t) - 2(2s) + 0(s+t) + 2(2s) + 1(6t)$$

$$= -6t - 4s + 4s + 6t = 0.$$

$$\vec{r}_3 \cdot \vec{z} = (4, 7, 7, -3, 1) \cdot (-2t, 2s, s+t, 2s, 6t)$$

$$= -8t + 4s + 2s + 2t - 6s + 6t = 0.$$