Section 3.2: Norm, Dot Product, and Distance in \mathbb{R}^n Objectives.

- Define and apply the notions of norm and distance in \mathbb{R}^n .
- Introduce the dot product of two vectors, and interpret the dot product geometrically.
- Study some properties and applications of the dot product.

The $\underline{\mathsf{norm}}$ $(\underline{\mathsf{length}},\ \underline{\mathsf{magnitude}})$ of a vector $\vec{v} = (v_1, v_2, \dots, v_n)$ in \mathbb{R}^n is

$$\|\vec{v}\| = \sqrt{V_1^2 + V_2^2 + \dots + V_n^2}$$
 note: this generalizes Pythagoras!!!

Dividing a (non-zero) vector \vec{v} by its norm produces the unit vector in the same direction as \vec{v} .

Example 1. Find the unit vector \vec{u} that has the same direction as $\vec{v} = (2, 1, -2)$. Check that $||\vec{u}|| = 1$.

$$\|\vec{V}\| = \sqrt{2^{2} + 1^{2} + (-2)^{2}} = \sqrt{9} = 3.$$

$$\vec{V} = \frac{1}{||\vec{V}||} \vec{V} = \frac{1}{3} (2, 1, -2) = (\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}).$$

$$\vec{U} = \frac{1}{||\vec{V}||} \vec{V} = \frac{1}{3} (2, 1, -2) = (\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}).$$

$$\vec{U} = (\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}).$$

$$\vec{U} = (\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}).$$

$$\vec{U} = (\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}).$$

The distance between two points $\vec{u}=(u_1,u_2,\ldots,u_n)$ and $\vec{v}=(v_1,v_2,\ldots,v_n)$ in \mathbb{R}^n is

$$d(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}|| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$

Example 2. Find the distance between the points $\vec{u}=(1,3,-2,0,2)$ and $\vec{v}=(3,0,1,1,-1)$ in \mathbb{R}^5 .

$$d(\vec{u}, \vec{v}) = \sqrt{(1-3)^2 + (3-0)^2 + (-2-1)^2 + (0-1)^2 + (2-(-1))^2}$$

$$= \sqrt{4+9+9+9+1+9}$$

$$= \sqrt{32}$$

$$= \sqrt{4\sqrt{2}}.$$

The dot product of two vectors $ec{u}=(u_1,u_2,\ldots,u_n)$ and $ec{v}=(v_1,v_2,\ldots,v_n)$ in \mathbb{R}^n is

note: vector · vector = Scalar

Example 3. Find the dot product of the vectors $\vec{u}=(1,3,2,4)$ and $\vec{v}=(-1,1,-2,1)$

$$\vec{u} \cdot \vec{v} = (1, 3, 2, 4) \cdot (-1, 1, -2, 1)$$

$$= -1 + 3 - 44 + 4$$

$$= 2.$$

In \mathbb{R}^2 and \mathbb{R}^3 , the dot product of two vectors is related to the angle between them. (This can also be generalized to finding "angles" between vectors in higher-dimensional spaces.)

A obtuse (=) v.v. <0.

Example 4. Find the angle between the vectors $\vec{u}=(1,2)$ and $\vec{v}=(3,1)$.

Example 5. Find the angle between a diagonal and an edge of a cube.

$$\cos \Theta = \frac{(1,1,1) \cdot (1,0,0)}{\|(1,1,1)\| \|(1,0,0)\|}$$

$$= \frac{1}{\sqrt{3}}$$

$$\Theta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right) = 54.74^{\circ}.$$

Notice that the dot product of a vector with itself is the square of the norm of the vector.

If
$$\vec{V} = (V_1, V_2, \dots, V_n)$$
 is a vector in \mathbb{R}^n , then $\vec{V} \cdot \vec{V} = V_1^2 + V_2^2 + \dots + V_n^2 = ||\vec{V}||^2$

Properties of the dot product. If \vec{u} , \vec{v} , and \vec{w} are vectors in \mathbb{R}^n , and k is a scalar, then:

1.
$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$
 "Symmetry" (dot product communes)
2. $\vec{0} \cdot \vec{v} = \vec{v} \cdot \vec{0} = 0$ ~ zero scalar

2.
$$\vec{0}\cdot\vec{v}=\vec{v}\cdot\vec{0}=$$
 0 \longleftarrow zero scalar

3.
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$
 dot product distributes over addition 4. $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{\omega} + \vec{v} \cdot \vec{u}$

5.
$$k(\vec{u} \cdot \vec{v}) = (k \vec{u}) \cdot \vec{v} = \vec{u} \cdot (k \vec{v})$$
 "homogeneity"

6.
$$\vec{v} \cdot \vec{v} \ge 0$$
, and $\vec{v} \cdot \vec{v} = 0$ if and only if $\vec{v} = \overrightarrow{0}$.

Example 6. Use properties 1 and 3 above to prove property 4.

$$(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{w} \cdot (\vec{u} + \vec{v}) \qquad \text{by property 1}$$

$$= \vec{w} \cdot \vec{u} + \vec{w} \cdot \vec{v} \qquad \text{by property 3}$$

$$= \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w} \qquad \text{by property 14}.$$

Example 7. Expand and simplify the vector expression.

$$(2\vec{u} + 3\vec{v}) \cdot (3\vec{u} - \vec{v}) = 2\vec{u} \cdot (3\vec{u} - \vec{v}) + 3\vec{v} \cdot (3\vec{u} - \vec{v})$$

$$= 6(\vec{u} \cdot \vec{u}) - 2(\vec{u} \cdot \vec{v}) + 9(\vec{v} \cdot \vec{u}) - 3(\vec{v} \cdot \vec{v})$$

$$= 6 ||\vec{u}||^2 - 2(\vec{u} \cdot \vec{v}) + 9(\vec{u} \cdot \vec{v}) - 3||\vec{v}||^2$$

$$= 6 ||\vec{u}||^2 + 7(\vec{u} \cdot \vec{v}) - 3||\vec{v}||^2$$

There are two important inequalities involving norms and distances in \mathbb{R}^n .

Cauchy-Schwarz Inequality. If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then:

 $|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| \, ||\vec{v}||.$

note: this implies that $-1 \le \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} \le 1$, so we can define the angle between \vec{u} and \vec{v} as $\Theta = \cos^{-1}(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|})$

Triangle Inequality. If \vec{u} , \vec{v} , and \vec{w} are vectors in \mathbb{R}^n , then:

(a)
$$\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$$

(b)
$$d(\vec{u}, \vec{v}) \le d(\vec{u}, \vec{w}) + d(\vec{w}, \vec{v})$$

Proofof (a).

$$d(\vec{x}, \vec{v})$$

$$d(\vec{x}, \vec{x})$$

$$d(\vec{x}, \vec{v})$$

 $||\vec{u} + \vec{v}||^{2} = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) \qquad \text{because} \qquad ||\vec{a}||^{2} = \vec{a} \cdot \vec{a}$ $= (\vec{u} \cdot \vec{u}) + 2 (\vec{u} \cdot \vec{v}) + (\vec{v} \cdot \vec{v}) \qquad \text{apply absolute value to } \vec{u} \cdot \vec{v}$ $\leq ||\vec{u}||^{2} + 2 ||\vec{u} \cdot \vec{v}|| + ||\vec{v}||^{2}$ $\leq ||\vec{u}||^{2} + 2 ||\vec{u}|| ||\vec{v}|| + ||\vec{v}||^{2}$ $= (||\vec{u}||^{2} + ||\vec{v}||)^{2}.$

Because || \vec{u} + \vec{v}|| \cdot 0 and || \vec{u}| + || \vec{v}|| \cdot 0, we have || \vec{u} + \vec{v}|| \le || \vec{u}|| + || \vec{v}||.

Example 8. Suppose that $\|\vec{u}\| = 4$ and $\|\vec{v}\| = 3$. What are the smallest and largest possible values of $\|\vec{u} + \vec{v}\|$?

$$\begin{aligned} \|\vec{u} + \vec{v}\| &\leq \|\vec{u}\| + \|\vec{v}\| = 4 + 3 = 7. \\ \|\vec{u}\| &= \|(\vec{u} + \vec{v}) - \vec{v}\| \leq \|\vec{u} + \vec{v}\| + \|\vec{v}\|, \quad \text{so} \quad 4 \leq \|\vec{u} + \vec{v}\| + 3. \end{aligned}$$
Thus $\|\vec{u} + \vec{v}\| \geq 1$, and therefore $1 \leq \|\vec{u} + \vec{v}\| \leq 7$.

In plane geometry (that is, in \mathbb{R}^2), the sum of the squares of the two diagonals of a parallelogram equals the sum of the squares of the four sides. This result is also true more generally in \mathbb{R}^n .

Parallelogram equation for vectors. If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then:

$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2(\|\vec{u}\|^2 + \|\vec{v}\|^2).$$

Proof.

$$\|\vec{x} + \vec{v}\|^{2} + \|\vec{x} - \vec{v}\|^{2} = (\vec{x} + \vec{v}) \cdot (\vec{x} + \vec{v}) + (\vec{x} - \vec{v}) \cdot (\vec{x} - \vec{v})$$

$$= (\vec{x} \cdot \vec{x}) + 2(\vec{x} \cdot \vec{v}) + (\vec{v} \cdot \vec{v}) + (\vec{x} \cdot \vec{x}) - 2(\vec{x} \cdot \vec{v}) + (\vec{v} \cdot \vec{v})$$

$$= 2(\vec{x} \cdot \vec{x}) + 2(\vec{v} \cdot \vec{v})$$

$$= 2(\|\vec{x}\|^{2} + \|\vec{v}\|^{2})$$

Taking the difference of the squares of the two diagonals of a parallelogram instead gives a different expression for the dot product of two vectors.

Theorem. If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then:

$$\vec{u} \cdot \vec{v} = \frac{1}{4} \|\vec{u} + \vec{v}\|^2 - \frac{1}{4} \|\vec{u} - \vec{v}\|^2.$$

Proof.
$$\frac{1}{4} \| \vec{u} + \vec{v} \|^{2} - \frac{1}{4} \| \vec{u} - \vec{v} \|^{2} = \frac{1}{4} (\vec{u} + \vec{v}) \cdot (\vec{v} + \vec{v}) - \frac{1}{4} (\vec{u} - \vec{v}) \cdot (\vec{v} - \vec{v})$$

$$= \frac{1}{4} ((\vec{u} \cdot \vec{u}) + 2(\vec{v} \cdot \vec{v}) + (\vec{v} \cdot \vec{v})) - \frac{1}{4} ((\vec{u} \cdot \vec{u}) - 2(\vec{u} \cdot \vec{v}) + (\vec{v} \cdot \vec{v}))$$

$$= \frac{1}{4} (4 (\vec{u} \cdot \vec{v}))$$

$$= \vec{u} \cdot \vec{v}$$