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Section 3.2: Norm, Dot Product, and Distance in R"
Objectives.

e Define and apply the notions of norm and distance in R”.

e Introduce the dot product of two vectors, and interpret the dot product geometrically

e Study some properties and applications of the dot product.

The norm (length, magnitude) of a vector ¥ = (vy,vz,...,v,) in R” is
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Dividing a (non-zero) vector ¥ by its norm produces the unit vector in the same direction as &

Example 1. Find the unit vector @ that has the same direction as 7 = (
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The distance between two points @ = (w1, ug,

1,-2). Check that ||@] = 1.

.y Un) and T = (v1,va,...,0,) in R™ is
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Example 2. Find the distance between the points & = (1,3,-2,0,2) and ¥ = (3,0,1,1,~1) in R®
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The dot product of two vectors @ = (uy,ua, - . - ,Ur) and ¥ = (vq,02,...,v,) in R™ is
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Example 3. Find the dot product of the vectors @ = (1,3, 2,4) and 7= (—1,1,-2,1)
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In R2 and R3, the dot product of two vectors is related to the angle between them. (This can also be generalized
to finding “angles” between vectors in higher-dimensional spaces.)
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Example 4. Find the angle between the vectors @ = (1,2) and ¥ = (3, 1).
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Example 5. Find the angle between a diagonal and an edge of a cube.
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Notice that the dot product of a vector with itself is the square of the norm of the vector.
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Properties of the dot product. If @, ¥, and @ are vectors in R”, and k is a scalar, then:
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Example 6. Use properties 1 and 3 above to prove property 4.
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Example 7. Expand and simplify the vector expression.
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There are two important inequalities involving norms and distances in R"™.
Cauchy-Schwarz Inequality. If i and ¥ are vectors in R™, then:
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Triangle Inequality. If &, ¥, and & are vectors in R”, then:
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Example 8. Suppose that ||| = 4 and ||7]| = 3. What are the smallest and largest possible values of ||Z+%/|?
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In plane geometry (that is, in R?), the sum of the squares of the two diagonals of a parallelogram equals the
sum of the squares of the four sides. This result is also true more generally in R,

Parallelogram equation for vectors. If 4 and ¥ are vectors in R?, then:

%+ @ + 1% — 312 = 2 (Jalf® + 5)1%) .

v

&1

S

4

£
)
4+
Sl

\
<}

e

W

(izrj)ﬁ!_(;’ +7) o+ ( 2-3) (& —‘\'7)
(@) + 2(29) + @) 4 (@-R)-2(2-9) & (¥-7)
21(%-2) « 2(9-9)

2(ll&*u‘ + llt?u‘).

1"

Taking the difference of the squares of the two diagonals of a parallelogram instead gives a different expression
for the dot product of two vectors.

Theorem. If @ and ¥ are vectors in R”, then:
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