Section 3.1: Vectors in 2-space, 3-space, and n-space Objectives.

- Introduce the some terminology and notation for vectors.
- Understand vector operations in \mathbb{R}^n geometrically and algebraically.
- Study some properties of vector operations.

A (geometric) vector is a quantity with a direction and a length, often represented by an arrow.

Two vectors can be added (geometrically) by placing the vectors end-to-end. (This is referred to as either the "triangle rule" or the "parallelogram rule".)

Multiplying a vector by a scalar changes ("scales") the length of the vector without changing the direction. If one vector is a scalar multiple of another, then we say the vectors are parallel. (Multiplying by a negative scalar reverses the orientation, but the result is still parallel to the original vector.)

We can view subtraction of a vector as "adding the negative of the vector".

If $P=(a_1,a_2,\ldots,a_n)$ and $Q=(b_1,b_2,\ldots,b_n)$ are two points in \mathbb{R}^n , then the vector from P to Q is

$$\overrightarrow{PQ} = (b_1 - a_1, b_2 - a_2, \dots, b_n - a_n).$$

Two vectors $\vec{u}=(u_1,u_2,\ldots,u_n)$ and $\vec{v}=(v_1,v_2,\ldots,v_n)$ are equal if their components are equal. That is:

$$\overrightarrow{U} = \overrightarrow{V} \iff u_1 = V_1$$
 and $u_2 = V_2$ and ... and $u_n = V_n$.

Example 1. Find the vector $\vec{u} = \overrightarrow{PQ}$ that has initial point P = (3, -1) and terminal point Q = (-2, 8).

Example 2. Find the initial point of a vector \vec{w} that has terminal point Q = (4,7,2) and is parallel to $\vec{v} = (-2,1,3)$ but has the opposite orientation.

$$P = (4 + (-2), 7 + 1, 2 + 3) = (2, 8, 5).$$

$$Q = (4, 7, 2)$$

Arithmetic with vectors (addition, subtraction, scalar multiplication) is done componentwise. If $\vec{u} = (u_1, u_2, \dots, u_n)$ and $\vec{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n and k is a scalar, then we define:

$$\vec{u} + \vec{V} = (u_1 + v_1, u_2 + v_2, ..., u_n + v_n)$$

$$k\vec{u} = (ku_1, ku_2, ..., ku_n)$$

$$-\vec{u} = (-u_1, -u_2, ..., -u_n)$$

Example 3. Let $\vec{u} = (3, 1, 4, -2)$ and $\vec{v} = (1, -2, 3, 0)$. Simplify:

(a)
$$\vec{u} + \vec{v} = (3, 1, 4, -2) + (1, -2, 3, 0) = (4, -1, 7, -2)$$

(b)
$$3\vec{u} - 4\vec{v} = 3(3,1,4,-z) - 4(1,-2,3,0) = (9,3,12,-6) - (4,-8,12,0)$$

= $(5,11,0,-6)$.

Properties of vector operations. If \vec{u} , \vec{v} , and \vec{w} are vectors in \mathbb{R}^n , and k and m are scalars, then:

1.
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{\omega})$$

$$5. k(\vec{u} + \vec{v}) = k \vec{u} + k \vec{v}$$

$$2. \ \vec{u} + \vec{v} = \ \vec{\nabla} + \vec{n}$$

6.
$$(k+m)\vec{u} = \vec{k} \vec{u} + \vec{m} \vec{v}$$

$$3. \vec{u} + \vec{0} = \vec{\lambda}$$

7.
$$k(m\vec{u}) = (km)\vec{u} = m(k\vec{u})$$

4.
$$\vec{u} + (-\vec{u}) = \vec{0}$$

8.
$$1\vec{u} = \vec{\zeta}$$

Let $\vec{u} = (u_1, u_2, \dots, u_n)$ and $\vec{V} = (V_1, V_2, \dots, V_n)$. Then $\vec{u} + \vec{v} = (u_1, u_2, \dots, u_n) + (v_1, v_2, \dots, v_n)$ def. of vector addition = $(u_1 + v_1, u_2 + v_2, ..., u_n + v_n)$ = $(v_1 + u_1, v_2 + u_2, ..., v_n + u_n)$ addition in \mathbb{R} is commutative. = (v1, v2, ..., vn) + (u1, 12, ..., un) 2 des. of vector addition. = 7 + T.

Example 4. Let $\vec{u}=(-1,4,6)$ and $\vec{v}=(3,3,3)$. Find the vector \vec{x} satisfying $4\vec{x}-2\vec{u}=2\vec{x}-\vec{v}$.

$$\Rightarrow \vec{\varkappa} = \frac{1}{2}(2\vec{\varkappa} - \vec{v}) = \vec{\varkappa} - \frac{1}{2}\vec{v}$$

$$= (-1, 4, 6) - \frac{1}{2}(3, 3, 3)$$

$$= (-\frac{5}{2}, \frac{5}{2}, \frac{a}{2}).$$

Theorem. If \vec{v} is a vector in \mathbb{R}^n and k is a scalar, then

$$1. \ 0\vec{v} = \vec{0}$$

2.
$$k\vec{0} = \vec{0}$$

3.
$$(-1)\vec{v} = -\vec{v}$$

let = (v1, v2, ..., vn). Then:

$$O\vec{v} = O(V_1, V_2, ..., V_n) = (Ov_1, Ov_2, ..., Ov_n) = (O, O, ..., O) = \vec{O}$$

A vector \vec{w} in \mathbb{R}^n is a <u>linear combination</u> of $\vec{v_1}, \vec{v_2}, \dots, \vec{v_r} \in \mathbb{R}^n$ if

$$\vec{W} = \vec{k}_1 \vec{v}_1 + \vec{k}_2 \vec{v}_2 + \cdots + \vec{k}_r \vec{v}_r$$
, where $\vec{k}_1, \vec{k}_2, \cdots, \vec{k}_r$ are scalars.

Example 5. Find scalars c_1, c_2, c_3 satisfying $c_1(1,2,2) + c_2(0,1,-1) + c_3(3,1,2) = (-1,7,7)$.

· i.e. write (-1,7,7) as a linear combination of (1,2,2), (0,1,-1), (3,1,2).

We can reduce this to ref using hours - Jordan domination:

0 1 0 -1 = ref. for lever system.

That is, c1=5, c2=-1, c3=-2.

Example 6. Show that there is no choice of scalars a and b such that a(3,-6)+b(-1,2)=(1,1).

We need to solve the system $3a-b=1 \longrightarrow \begin{bmatrix} 5 & -1 & 1 \\ -6a+2b=21. \end{bmatrix} \xrightarrow{R_2+2R_3} \begin{bmatrix} 3 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ system is second inconsistant.

There is no solution!