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Section 2.1: Determinants by Cofactor Expansion
Objectives.
¢ Understand how to find minors and cofactors.
e Use minors and cofactors to compute the determinant of a square matrix.

e Find the determinant of a 3 x 3 matrix efficiently.

Recall that the determinant of A = is det (A) = ad — be.

solabon M([}{D aoL be o« |0 |zed-be

We will use this to inductively/ recurs:vely define determinants for larger square matrices.

If A= [a;;] is a square matrix, then

e the minor of a;; is Ha d.LLtrmrnanl' o‘—\ H{ Mqh.n ol)luwal Q‘W« A
mij b«:s o‘a(e('n—xs oo L and Co‘uw\v\ J
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(a) Find the minor of a11 and the cofactor of ai1.

M, = M([g zD 6-40> -3¢, Co (M = (0 (31)
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Example 1. Let A=

(b) Find the minor of a3 and the cofactor of ags.

M, = l oo PR TR Cp * M, = @ (15)
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= - |S.
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Cofactor Expansion.
If Ais an n x n matrix, then the determinant of A is
- Ha
dok (A) = Ay CL\ + aizcu +o 4 G, Cin

e Xpansion alo.\S i fow
- : ... . C Ha
dﬂ.«"' (A\ = a|.3 Cli + a"j Cz:) ¥ + a'\“ Cl\J e,KPaV\sTM alo"s J CJ‘-‘IWV\ 3
Example 2. Write out the cofactor expansion of A = [Z Z] along the first column.

A.d’ (A\ = aucu * auCz' = ad + C('b) = &A’Lc.
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Example 3. Find the determinant of the matrix B= |2 -2 3|.
4 5 2
-2 3 2 3 1 -2
M(B):l 92’—3qzlz+0«;
- (o - 6X) - 3 (G- ()W) + o((z)(s)-(—o(c.))
: "4—3(—5’) "o =$-+’ . ;‘_é’ﬂ(o‘-’ of zers!!!
2 =110 |4
Example 4. Find the determinant of the matrix C = ? (1) : g 23
-1 1\0/3
o 1 -3 el -1 1 -4 . -1 4
dqa"(A>‘:O | © -0 ) o 2| +%|o 1 -3 -ble 1 -3
L -t 3 -1 3 { o 1
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Theorem. The determinant of an upper triangular matrix, a lower triangular matrix, or a diagonal matrix is
the product of the diagonal entries.

ai; a2 @13 G4

Example 5. Show that the theorem above holds for A = 0 a2z a2 o .
0 0O as3 a3
0

0 0 au

° L& cpg\-ac/‘or' enpomg o atlwa co’uww\ |.

L (A) ) Gz ng az“
do = a4, g Azs xq| -~ +0 - p
o Quq
- A3 &
= Ay \Qy h -0 4.0‘)
O agq

T Ry Az Ry R,
e

Finding determinants can be very time-consuming, especially for large matrices. There is an efficient method
for computing the determinant of a 3 x 3 matrix (without using cofactor expansion) that is similar to how we

compute the determinant of a 2 x 2 matrix.

: ad-be.

~ rad

b 1 3 0

Example 6. Find the determinant of B= |2 -2 3|.
4 5 2

~0 ~IS-IZ L) 136 40

dot (B) = [-4 +36 4o | +[—o - ,;_‘z-S
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Example 7. Find all values of X for which the determinant of A = [)‘1_1 )\i2] is 0.
OQOJ'(A}: (/,\H)(’)\-Z)—& = 7\& “AN-2-4 = N A-6 = (';\4,23(«)‘,3).
T[\u-s A&L(A) =0 :p A=-2 o A=S.

So ... what is a determinant?

In some sense, the determinant of a square matrix A is a scaling factor for the linear transformation T'4. For
instance, if A is a 2 x 2 matrix, then (the absolute value of) det A is the area of the parallelogram obtained
by applying 1’4 to the unit square.

. . 1 0 -1 1 11
Example 8. Consider the matrices A = [0 2], B = [ 5 ‘3], and C = [2 2].

(a) Find det A, det B, and det C.
Lt (D=7 | At (B)= - S , dek ()= 0.

(b) Sketch the image of the unit square under the transformations T4, T'g, and 1.

4

21, —‘gfa/m:!.

TA / _g. > \Tc,
I
3

4
ha
A Ts Y 4
2 =7 . st i ~ alea = 0
afe 2 4 ’f(.
TE) I’ ,.,
t1 'r(e'b
i TEY)
A\l o er(%h 5 IE] l( bx
T(€) =3 o

(c) Compare the determinants in part (a) with each image in part (b).
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Section 2.2: Evaluating Determinants by Row Reduction
Objectives.
e Understand how elementary row operations affect determinants.
e Use row reduction to compute determinants.

e Introduce column operations and apply them to compute determinants.

The “cofactor expansion” method for finding determinants leads to some useful observations.
Theorem. Let A be a square matrix. If A has a row (or column) of zeros, then det A = 0.
o) t 2 3| &e— nofabion waesns “deberminant”
e - au’[os‘x =0 oo ol =0
’ Y s

Theorem. Let A be a square matrix. Then det A = det AT .

wl\ﬁf CDQOCLW exXpawnsTon Wm\ H~. iu\ o °p A ) H’* St
as copac‘-or s He iH" coluum aQ lq—r-

Theorem. Let A be a square matrix.

(a) If B is obtained by multiplying a row (or column) of A by a scalar k, then det B = k det A.

ka" ka ka
& '3 au q\?_ a\?

Q Qv Raq Oy = k| 4y an ay

Az A3y gy a3y A3z @3

(b) i B is obtained by swapping two rows (or columns) of A, then det B = — det A.

ab- b a
Q- c d|l T T4 e

(c) If B is obtained by adding a multiple of one row of A to another (or a multiple of one column of A to
another), then det B = det A.

ay + ka;, agq+ l’-azz

e3- -



Math 251 Spring 2023

Theorem. Let E be an n x n elementary matrix.

(a) If E is obtained by multiplying a row of I, by a scalar k, then det E = k.
(b) If E is obtained by swapping two rows of I,, then det £ = —1. ~

(c) If E is obtained by adding a multiple of one row of I, to another, then det E = 1.

¥

e i\ o o o o t o 4
w((p) s w((isig)n, wizi o)

Theorem. Let A be a square matrix. If two rows (or two columns) of A are proportional, then det A = 0.

SN { K9
a,. JL" {'«.z}) =0 i Aot ‘% 3 —3] = O
C7.=ZC|

Example 1. Find each determinant.

1 0 0 O I o o ©
0020 _ |0 | oo
@ g 1007 s 0 2 0o =2
000 1 0o o o |
>
R, 2R3
{rvoeanlar
10 -4 0 [ o -4 o (& UPPT TRl
11 0 06|_|o 1 & o | be: R“"'Z-*"ﬂ\g.
(b) 00 1 0= - \ o - —g. foﬂ‘(ﬂ\“ 3
00 0 =3 0 0o o -3
RZ‘_»RZ'RI
3 0
-5 0
-2 0 — O' be_c.au.gg, CS’ ';ZC\
5 1
0 0
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Example 2. Use row reduction to compute -each determinant.

0 1 5 T -6 9 + swap K, and R
@3 6= - | o 5 N : by, -1
2 6 1 2 6 | malbiply by ~
B P \huﬁwwoﬁgw*’?‘*
o oelermaanb.
{t -2 3
= -3 | o 1§ Ry — Ky ~IR, - o
© 10 -% D 1Y P T wol cl/w—-%&"!"
T A ~ ‘
T -3 o [ £y —? 123—'(0‘22
6 o -s§

\ Ad'u'wd\f\qn" O(pgg w_g_}' OL\M%,'”,

= (65,
-1 4 2 6 -l & L 6 .
0017 _fo o 7 R —R3-R,
~1 2 4 14 o -2 2 8
0 2 4 6 o 2 & 6
o 0 - > Cos)ﬂc‘or' eKPav\Gl‘m\ 0(0»3 co‘umv\ ].
: (- -2 1 g .
S
D ﬁz"'7ﬁz+23
(o] “‘ T
== o 6 lu
A 6 ) Copn(‘of expantion d(og columin ,
{ 7
R N BT
= -7 (M—Qz)
: S6.
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We can also use column operations to simplify determinant calculations.

Example 3. Find the determinant of each matrix.

1 -1 0 2 I -1 e 2 { o o o -
-2 7 0 -4 -2 1 ° 4 | _ |7 5§ o o
@A=1, 3 3 t -3 s 7 -2 3 o
2 6 -5 3 2 6 -5 3 2 g -5 -
Cq (- 2€, = ()G
= - 15
35 —2 6 5 5 -t 6 R =R, -3R,
ot 2 -1 1 _ S Y
(b)B_ 24 1 5 M('B)’ 'l l‘ ' s ﬂs-")Q-s—ZQ-,_
37 5 3 1 7 ¢ 3 Ro = Ry - 38,
o -1 { 3
g | 1 -1 ]
° o 3 3 ?6‘(-9( .
[ g o ” ekfmc“"‘!!'
-1 t 3
- - ) 33

( 8 o ﬂ},—>ﬁ3+2.
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Determinants and Solutions of Linear Systems.

In Sections 1.5 and 1.6, we learned about the “Equivalance Theorem”, which gives several conditions that-are
equivalent to a linear system having a unique solution. We can now add a condition involving determinants.

~
Equivalence Theorem. If A is an n X n matrix, then the following statements are equivalent.
1. Ais invertible.
1
2. AZ = 0 has only the trivial solution.
Cecbvon 1-5
3. The reduced row echelon form of A is I,,.
4. A can be written as a product of elementary matrices. J
5. A% = b is consistent for every n x 1 vector b. a
Cee o o
6. AT = Ehas exactly one solution for every n x 1 vector b.
7. det A #£0 ‘S Cebion 23,
Example 4. Which of the following matrices is invertible?
1 0 -2 1 5 1 0 1 -1 1 0 1 N
A=13 4 1 B=1|01 6 C=|-11 -1 D=8 1 -5
00 0 0 0 2 0 0 1 2 0 2
btA=0 so dotBio 0 B  dbC {0, s D =0 (=20
I ) z )
. taverkible : '
A— ™ ot nverhole s dwverkble C 5 tnverk . 2 DN ,:g_l-
- 21 S’wo.‘, ﬂ, Mlzl) Swverk bl !
1 1 1 0 1 0 1 5 1 2 3 4
1 -1 -1 1 -1 0 4 1 4 3 2 1
F_2000 G—0062 H_5555
2 1 0 0 2 0 -3 1 0 0 01
Caun malte {'rl‘ausu(ar' bg dn;" k=0 23 =I5, "’21,

SWQ.O .o\‘v\s fowg

Job F
= F

£0
aver Hele .

(colowman of  20505)

—'—') Q s __V\L’_‘
(‘mw,rl—-‘bl{.

= H o »_\_o_l' mverkible
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Section 2.3: Properties of Determinants; Cramer’s Rule
Objectives.
e Understand how determinants interact with matrix operations.
e Introduce the adjoint of a square matrix.

o Apply Cramer's Rule to solve a linear system.

We have several methods for finding the determinant of a matrix. We now want to find ways to deal with
determinants of expressions such as k4, A + B, AB, and AL

If Aisan n x n matrix, and k is a scalar, then det (kA) = k™ det A.

Example 1. Confirm the property above for the matrix A = [g Z] and the scalar %.

dot (km) = Ad( ” :ﬂ) = (ka)(kd) - (kb)(kd)

= k’(ao('bc> = 0(11["4

If A and B are square matrices of the same size, then det (AB) = (det A)(det B). I

Example 2. Confirm the property above for the matrices A = [Z _21] and B = [_3 > }

db A= -G-8 , bk T=é-5 = (’MA)OMB) y

AE:[: —S[—? —;z]: :::Z ;ZT , ALL(Aﬂ:—uz-(—lzo)

1
. . . . -1y
If Ais an invertible matrix, then det (A7) = Tt A
Example 3. Suppose that A is invertible. Use det (AB) = (det A)(det B) to prove that det (A~!) = 3 1A'
e

.T-P A (B MWL‘HQ/ H*W\ A-' QM'S"‘S auol
dot T = ek (AA7Y 2 (b (Lt AT) | 5o 1=t A)(dRHAY).

{

Therelore, b (A7) > 247 .
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For most pairs of matrices, the determinant of the sum is not_the sum of the determinants.
—— 3

Ssa—

In general, det (A + B) # det A + det B.

Example 4. Confirm the property above for the matrices A = [2 1] _ 5 ]

dkhA=9, MbB=I ALLA+A,,L@//;{
I
A+'B‘—[;.’ g] et (,4 +B) = _CZ/O//W"' Q{}M“

The one situation where the sum of two determinants is useful is when two matrices are almost identical.

Theorem. Let A, B, and C be square matrices that differ only in row 7, and suppose that the ith row of C
is the sum of the ith row of A and the ith row of B. Then det C = det A + det B.

w[,ua'z wou,f-or MPMM.!!! D @Q_g‘of e;cp.a(ows ow L.
et s Sl s
JQ;" c = ¢q Cé( + Cc;ciz ook Con Cl-"‘ = (a.;, +b,;|\ Cq +(a;1é&f-b;;> 4 ;(_ 3

= a“C,;, + .- +a;,.C.;,\ ¥ b;‘ C" + - + b;_“c‘j,‘ = a(l,""A 3 dp'-’»B )
e —"

0 1 3 0 1
Example 5. Confirm this theorem for the matrices A= |0 2 2 |, B= 0 2 2|,andC = |0 2 2].
4 0 —1 0 2 1 4 2 0
i
T
OQL{.A-_ 0 T 1 =1, ﬂl:z(—s—a\ = - 14
4 ~1
3 o 1 2 z| - 3(2-4) = -6
det B = o = 2| = 3|1t 3( )
o 7 |\
I o | 3 o0 |
dt C = © z | =]e 2 2 |=12 K '\:z(-e_q):—ZO_
& 2 o & o -2 & -z
T
ﬂs‘qes"ﬂz

‘T[\,u.s dek-C = Aok A +ditS.

2
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The (classical) adjoint of a square matrix A is formed by transposing the matrix of cofactors.

Math 251

Cu Cﬂ. o Cia T- i Cu Cet --- Cvu
a-dj A - Czl C‘Z?. T th = C'z sz T Cru.
Ca Cuz '3”le1"‘ L, Cia C’lu - Gaw
Example 6. Find the adjointof A= |0 2 2|.
3 1 0
, 7z 1 12| © 2
= -\ - - .

o -0 ‘ °\ . Cm’(") 3 0 :-(—6):@ Cop==-6
ot = &l oo momr 5 -8 Cr s O
Cy = © Cir = -6 G; = 6

-2 b -6 T -2 { o
adj A= 1 -3 o z 6 -3 -6
0o -6 6 -6 © £ 1.

A useful application of the adjoint matrix is finding an inverse.

1
Theorem. If A is an invertible matrix, then A™! = adjA.
det A

-Cl’ow Ex. 6" 30 z ! © -6 @ @
LS AN AN SR I
3 (o -6 0 6 o o -6

Example 7. Find the inverse of the matrix A in the previous example.

K4 1) 3 i )
o(b{‘A" o 2 ¢ x|l o 2 2 = -6
2 | © o o -

-1 ] o

)

A,!
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Cramer's Rule. If A is an 7 x n matrix such that det A # 0, then the system AZ = b has the unique solution

_det Ay _ det A _ det A,
17 et A 2T et A S n = et A
where A; is obtained by replacing column j of A with the vector b.
Example 8. Use Cramer’s Rule to solve the linear system:
1 +2x3 =26
—3x1 + 4x9 + 623 = 30
- -
— 21— 29 + 3z3 =8 /Ci’_%zcl
! o 2 ( o 2 ' o o
A=]-3 4 ¢ det A= |-3 ¢ o|=|-3 « 12
-1 -7 3 ’ -t -2 3 -l -1 s
N 12
= \ _— =20—(-2Q>=&C|_
6 o 2 £ o 7
A|= 00 {4 6 : dd.A': 70 6| = = 40
3 -1 3| g -2 3
(1 6 2] "6 1
N.:|-3 30 e | ok A |3 30 6= =
-1 4 3 -1 g 3
i i
{ o 6 T - B 4
= | -3 = | % 4 30 = --- = |52
ﬂz 4L 30 ; dL(" AB -1 -2 8
-1z 8
Te (ube D = det 4. 4o _ o
Solntion { { m = ‘l‘( = T
xl - —0_(2«" A( - 72' - -'_Z.
det A @4 T

dot As 152 4

~
w
1
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Section 3.1: Vectors in 2-space, 3-space, and n-space
Objectives.
¢ Introduce the some terminology and notation for vectors.
e Understand vector operations in R™ geometrically and algebraically.

e Study some properties of vector operations.

A (geometric) vector is a quantity with a direction and a length, often represented by an arrow.

-y
<
STED = >

Ml— Al not ciwll”' equa
( @m«" |em5u~s) ("lmf!ﬂi'difechms) (dﬁ%m.l' owlqh‘ms)

Two vectors can be added (geometrically) by placing the vectors end-to-end. (This is referred to as either the
“triangle rule” or the “parallelogram rule”.)

vl

IM’L" l? *’3 v H«L

 dugoeal of a
» pmlk(oﬁmm wi Ha
34-7 ?IJ‘-’Z 3 anol \’l’

Multiplying a vector by a scalar changes (“scales”) the Iength of the vector without changing the direction.
If one vector is a scalar multiple of another, then we say the vectors are parallel. (Multiplying by a negative
scalar reverses the orientation, but the result is still parallel to the original vector.)

=1
A
LA T . . N - . L
30 = UZI 3 ' ’”:'2“ M’Li He zero vecer
7 we al gl | O i gl k-
é___z_-;—— l aJQrﬂ VGC"O'"
T LA

We can view subtraction of a vector as “adding the negative of the vector”.

- -
-V v
- i
XN 2w
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IfIP = (a1, 0a2,...,a,) and Q = (b1, b9,. .. ,bn)‘ are two points in R”, then the vector from P to Q is

l.v\l'L\'Q‘ P.ru" %‘u.l Pmm""
—_
PQ = (bl-a|,b2"a;,"', by\"an).
Two vectors @ = (u1,u2,...,u) and ¥ = (vy,vs,

..,Un) are equal if their components are equal. That is:
-

=
W=V & W=V, amd w2V, and o amd wua =,

Example 1. Find the vector 4 = 1@ that has initial point P = (3, —1) and terminal point Q = (-2, 8).

QR

; j=15§=(-z—;,8—(—'))=ﬂ
F

Example 2. Find the initial point of a vector w that has terminal point @ = (4,7,2) and is parallel to
v = (—2,1,3) but has the opposite orientation.

ie. chooe w=kV whe k<o.

P
N - ”:(-,',’5)_
\\ 1 P=(&+(-“3,;7H,z+§)=(2,8,s),

Q= (“-7'Z)

Arithmetic with vectors (addition, subtraction, scalar multiplication) is done componentwise. If @ = (uy,us, . . ., up)
and ¥ = (v1,v2,...,v,) are vectors in R™ and k is a scalar, then we define:
- -
w v = (M‘ 1—V“ M1+\/1, - Wi *’Vn)
kw =
wn

(ku, y kug o ku,\)

("M" 'M.l, PRI ,-“V\)

Example 3. Let @ = (3,1,4, —2): and ¥ = (1,-2,3,0). Simplify:

J'S
-

~

@a+i= (3,1,¢,-2)+ (1,-2,3,0) = (& -1, 7, -2)

) 3i-45= 3 (31,4, -0) - &(1,-2,3,0)

(3.5, 2,-) - (,-7.1%,9)
(S" 1, o, -6)_

"
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1L @+9)+d= 0+ (7 +2)

£} F

i~
{l

+

41

2.

w

&

+

[e=]]

Il

Fl <y

Properties of vector operations. If i, ¥, and & are vectors in R”, and & and m are scalars, then:

5. k(@+7) = k3 +kd

Proof of 2. Le"‘

- -
wnw+v =

;’:(u”ul'...,u“) and '\7'-‘- (V,’Vl'..-’v,‘)_ 'n\t.v\
(Mnu‘l,"‘ ‘Mv\) + (VI,VI,"-,VV\)) ,{‘C ,ﬂ vec.‘ﬂr aAAl“bu

z (M‘ + VI, U +V, y oo, Wa +Vn) 2 AML\O“ . IR s pr\wm"*"i“"
= (V‘-G-M‘lVIl-Mz'---'Vn{—un) ')/ M p l'o add“f
. v ' (TIow |
= (VI)VI,"',V’\) + (u|) 'u"-l'“!un) ’ “
- -
=V or o,

Example 4. Let i = (—1,4,6) and 7= (3,3, 3). Find the vector # satisfying 4% — 2% = 2% — #.

b -1 =22 -3 = 23 = 2a-3
2 -
= £ =32 V)= 243
= (-l'L('é)- {(313I3)
§ £ A
= (—ia z, ?.).
ar /_’__________
‘5‘9\/ 2000 ‘ﬁég-':
\{Iheorem‘/lf 7 is a vector in R™ and % is a scalar, then
1. 05=0 2. k0=0 3. (-1)7=-7

Proof of 1. Lt."

'\',"‘—(v,,vz,.-- . Vn )

T‘Mv\’

O:’! = O(VHV,_' T V") * (OV,’OV.,_'.--, Ov“) N (o'ol T 0) - g .
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A vector w in R™ is a linear combination of 7,5, ..., 0, € R® if
- - - -
w = k.V. + kz V1 +--. % kf‘ Vr , wl\yﬁ. kl, "‘l,"',l(r are

sealors.

Example 5. Find scalars c1, ¢g, c3 satisfying ¢;(1,2,2) + ¢2(0,1, —1) + ¢3(3,1,2) = (-1, 7, 7).
s .e. wr.‘l-: (",7,‘7) as &

|n‘v\.¢ar co-«lm‘nq‘-v‘ou OQ (',2,2), (O'I'—f\‘ (3,')2).
’n\is eiuu“duv\ iy eiuJ‘Valut"

Lo ‘I‘Lw_ lmear S‘GS‘\"%
c, * 3¢, = -1 \ e 3 -1
ZC' + Cz + C‘s = 7 e——% yA | ! 1
- A | 2 7
ZC( - Cz + 263 - 7

WQ- Con rep‘m I‘t\rs “O rr{,-p umxl apw.g §- :ywo‘:m a'liwi‘m L"'Jh .

\ o

<
o | : —|\l “ rre,Q. Qr I«,,_a, ;,69L.m
6 © o - .

Tk o

' ¢, =9, Cp=-l, € =72,

Example 6. Show that there is no choice of scalars a and b such that a(3, —6) + b(~1,2) = (1,1)

We weeld o solve He 916?"0\«

Ta-b = | _— ['5 -1 I ' ﬂz+2l2;>
~bo +26 =41, 6 z 1
’ﬂ;un is
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Section 3.2: Norm, Dot Product, and Distance in R"
Objectives.

e Define and apply the notions of norm and distance in R”.

e Introduce the dot product of two vectors, and interpret the dot product geometrically

e Study some properties and applications of the dot product.

The norm (length, magnitude) of a vector ¥ = (vy,vz,...,v,) in R” is

N . l|‘ m
|71 2\]\,!1*‘/21*'-- PV pole Hhv goualizas Byfangoms

Dividing a (non-zero) vector ¥ by its norm produces the unit vector in the same direction as &

Example 1. Find the unit vector @ that has the same direction as 7 = (

gl = it (-2) - =3

KK F 1> (=) \FI' / 7= (21, -2)

2 eV syl (5409, 2-(5.4,-3).
)

dak [l (3 (O (2 = [E =1

The distance between two points @ = (w1, ug,

1,-2). Check that ||@] = 1.

.y Un) and T = (v1,va,...,0,) in R™ is

= J(Ul"V.\z + (U"n‘Vt)l LERRRE 4 (‘A"'v")z

Example 2. Find the distance between the points & = (1,3,-2,0,2) and ¥ = (3,0,1,1,~1) in R®

4(53, 7) = \ﬂl— 3+ (-0 + (2-1)"+ (0-1)"+4 (2_(“)?

M2,3)- |-

=JQ+°\+‘T+—I+‘1
= (32
-~ G 7.

—
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The dot product of two vectors @ = (uy,ua, - . - ,Ur) and ¥ = (vq,02,...,v,) in R™ is
-
K-V = M‘V, & M'lvz e +uv\vy\. V\OLQ-' VQC,"O?'UCC.“D( -‘SCQ(ar'
fudbid

Example 3. Find the dot product of the vectors @ = (1,3, 2,4) and 7= (—1,1,-2,1)

7.7= (La24) (-1, -2,0)
— M- g4 +4
2.

ey

i

" -

In R2 and R3, the dot product of two vectors is related to the angle between them. (This can also be generalized
to finding “angles” between vectors in higher-dimensional spaces.)

”U‘" ” ” cos © v
=2 cosO - 3k % -
- w
21 () L
O obluye & u-v <O,

4
O awmbe & U
Example 4. Find the angle between the vectors @ = (1,2) and ¥ = (3, 1).

2 V-, R IN= e

) 2 © 2V s !
co < == - - — F— - °
N ’ R Tl T I i

Example 5. Find the angle between a diagonal and an edge of a cube.
2
(i,0,1) - (n,o’o)
| Arwaom' - (‘)'» ') co39 - —
| Cro DI IE(, 0,00
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Notice that the dot product of a vector with itself is the square of the norm of the vector.

I'p 72 (vl,v‘l.’"',vv\) S o vac!‘or i lg“, H"-LV\

VeV =vtegt e syt = VP

Properties of the dot product. If @, ¥, and @ are vectors in R”, and k is a scalar, then:

L= yv.u lor “S'sm"*r‘j" (I(OJ’ Pmo(uc"' ('-wanu"us)

3 — (—,+ —-) -y - 4_ - =5
= o W
u-v+w wn- v 78 o(pL Pl'w(‘*"— AP}‘V‘L«L—S over ap(ol.‘le-\
- -t
4. (@+7) F= A0 + vow

n

5 k(d-7) = (l‘a "\-/’ = :' ll.‘\-l’) ‘\l‘\OW\o%ng‘La

6. ¥-92>0,and ¥-7=0if and only if ¥ = 0. “Poyl"-‘vv'lnh

Example 6. Use properties 1 and 3 above to prove property 4.

(U\ +V = —1:)'- -u? +\-7 lhs P"’P"La
= 'v:;-;-’ +‘v-:)'—\7 L‘a PNPW"‘Q 3
D ReR VR by properky 4.

Example 7. Expand and simplify the vector expression.

eira ei-9= 22 (32-7) + 33 (32-7)
2 6 (2:3) - 2(2-9) + 4(3-2) - 5(3.9)
= 6 RN - 2(2-9) +a(2-9) - 3@y

cognaE + (@) - s8I
s
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There are two important inequalities involving norms and distances in R"™.
Cauchy-Schwarz Inequality. If i and ¥ are vectors in R™, then:
@ - o] < [l (|9
- -
nole:  Hhis implies Hat -1 ¢ m ;“ ;{V“ $1 ) so we can define

(7]

i
the Mc_gle be heen R and v as © = cos (uallﬂ'\‘hl).

Triangle Inequality. If &, ¥, and & are vectors in R”, then:
(2) i+ 31 < 1] + 5] bramae  equalhy  Br echors
(b) d(@,7) < d(@, D) +d(, ) briangle  inequally [ dishances

-
n

<y

d
+
<}

Proofos—‘ (“‘ .

|2 «30*

L aN

I

2.2) + 1 (2:9) + (2.9)

oriqin
(R ) (@ +9) — beconse j2i*- 2.2

sy
<)

qrpl\s a.LSalu‘t Va(uc Lo

o N N

S NRIE + 22010 « 19)*

(Ve « 1)

Beeawse [@ +7][30 wd IZU+(TU%0, we bae & «TUCIRY + IR,

Example 8. Suppose that ||| = 4 and ||7]| = 3. What are the smallest and largest possible values of ||Z+%/|?

&« 3]
i

Thus

I

IR0+ UFN= 643 =7,

NN -V UBTY 0P 5o b €(ReTl 43

1]

[2+30%1 ) ad Hele 14T +VN€T.

4
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In plane geometry (that is, in R?), the sum of the squares of the two diagonals of a parallelogram equals the
sum of the squares of the four sides. This result is also true more generally in R,

Parallelogram equation for vectors. If 4 and ¥ are vectors in R?, then:

%+ @ + 1% — 312 = 2 (Jalf® + 5)1%) .

v

&1

S

4

£
)
4+
Sl

\
<}

e

W

(izrj)ﬁ!_(;’ +7) o+ ( 2-3) (& —‘\'7)
(@) + 2(29) + @) 4 (@-R)-2(2-9) & (¥-7)
21(%-2) « 2(9-9)

2(ll&*u‘ + llt?u‘).

1"

Taking the difference of the squares of the two diagonals of a parallelogram instead gives a different expression
for the dot product of two vectors.

Theorem. If @ and ¥ are vectors in R”, then:

1 1
5= i+ P - gl - .

e

Proof. 7 & +3I* - L -9yt -

[
e

3 @) (@2+7) - L(2-3)-(2-7)
L ((,;v,;:) @+ @N) - 1 (@2 - 22-9) »(0’-0’))

(4(2-)

4
-
v

A
4
-3
(V.

1"

5‘
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Section 3.3: Orthogonality
Objectives.
e Introduce the definition of orthogonality in R™,

e Represent lines in R? and planes in ]R5 using vector equations.

e Project a vector onto a line.

o Write a vector as the sum of two orthogonal components.

In Section 3.2, we defined the angle @ between two vectors % and ¥ as
S = =
WV \')

O = cos” | 121070

Y
<y

The vectors % and ' are orthogonal (or perpendicular) if

- LQ a.v o =) 9 S acu"(

- - 5

K-V =0 = ;’-i?=o == O it a rvbhl-a..{(h
:'? <o =) & 6 ob(‘u‘{

Example 1. Show that the vectors @ = (1,-2,2,5) and 7= (3,2,3,—1) in R* are orthogonal.

—J-V'— (\,—'l,z,f).(z,z,?,—l) = ?-4 +6-¢ =0
TLU-\S :?. auo( U’ are or'“'*%ovw,

Notice that in R™, the standard basis vectors €1, €5, . .., &, are all orthogonal.

eCS' 2'-2*'; (l.o'---)o)'(o,o'.-.,I) = O,

Pythagorean Theorem in R". If i and ' are orthogonal vectors in R™ then

i+ 1P = ) +
Proof. [ @ +TU% = (R+T)(247) = (2-2) » 2@3) + @7
—
=0
= |z . Il’\“l'z
ful sV
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A straight line in R? can be described by specifying a point and a normal direction (that is, a vector orthogonal
to the line).
I‘p (7(, 5) s Ov\j Ponl‘ on HAL l“"\l L)
LY\ 2=(a,0) =
A 1] o)
(normal deckor)  Hun (%o, 4-u) is oFHogendd o @

= .
Yo - ' N e ('x»xo, 3—\30) = 0
(09 (a,6) - (%o, 9-99) = ©
7‘; % a (x-%) + b(‘d"‘d"):O‘(
or: ox bﬂ +Cc =0,

Example 2. Write an equation for the line in R? through the point (1,4) with normal 7
diagram indicating the point, the normal vector, and the line.

7 ("’ Ho,y-yo) =O = (—2,1)-(x—',5- 4) =0
= 20— + 1(3—4) =0

2
=) —Zx+5-2=0. /

The same idea can be used to write equations for planes in R3.

/

-

W . (7‘-—7(." 4-Yeo , 8—39) =0

(alLI C\)'Cx'x", Y-Ye, Z-20)=0 |
fa(%—xo) +b(‘ﬂ'ﬂ°) +C(Z— a) -0 [

or: ax+—bb+c% +rd =0

Example 3. Write an equation for the plane in R3 through the point (2, —5,0) with normal 7 = (1,3, —1).
-
V\'(”C”‘v,'j’ja, Z—Z.)‘—O = (1',?’—1)'(1—2,3*-5‘/ 1?) =0
= (1-274—3@3*«5)— 2 =0

=> ,,,_4.3.3_;5 = +(3 0.
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In Chapter 1, we introduced (orthogonal) projections onto the coordinate axes as examples or linear transfor-
mations. We can now extend this idea to (orthogonal) projections onto any line in R™.

Projection Theorem. If @ and @ are vectors in R™ with @ # 0, then @ can be written in exactly one way as
U = Wi + Wa, where 1 is parallel to @ and s is orthogonal to @. Specifically:

- TR . . U 7 S
Wy = projzi = Tale a and We = U — Projzi = @ — TEE a.
-3 -
ﬁl_‘a:’ U\Zl = ka’ and Wy e 5.’ = O ,
—_ - - = - -3 - - -
Ao = Wy ¥Walea = W ra +wy
- 2
= ka-a +vo0 = ku&u
- 2
w:* o
= k== —0= | s
S Hall
— > - -3 < S
-0 . Qa w _ wn-a 2 ;3 _ : Wwe o 2
W, = 74 = T - -
VPR I -1 [kl

Example 4. Let @ = (1,2,3) and @ = (4,—1, —1). Find the component of  parallel to @ and the component
of @ orthogonal to d.

Compowml‘ // ’L" 2:

L2 e o A ECR] ( (a-u (3 T
P2 -~ I aI* (4,1, -0 (4, -.) 18 (2)

2 L oy\_ (fu 3 53
:_ijé?j - (h'L,‘)"(“L (g, ‘e) - (q ) (& 7 (8

The norm of the orthogonal projection (of % onto @ can be written either in terms of the two vectors or in
terms of & and the angle # between ¥ and &.
- -
| X<
4

: lomia - || i 3+ e 191 - 152

!
{
t
{
f
l

) 2| &) ceso

~ §-2 (20 T = 9;‘"3“ cos O .
| proj 21 = IR coso 3 AN

[e 13700 v\ﬁ 6
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Example 5. Let L be a line through the origin in R? that makes an angle 6 with the positive z-axis.

(a) Find the projections of & = (1,0) and & = (0, 1) onto L.

E"(Cose, sfm@) is a vehor H-a. o(nrecﬁrou. eﬂ L
ped (1,0). (cos,stin 9)

PNz @ P (co5, 508) = (c5°0  cosOsm O)
P'md? g" . & ) (coze, 29 (cos8, m0) = (cw@sm@, S’MZG)
|

(b) Find the standard matrix Py for the linear transformation 7' : R? — R? that projects each point onto L.

' . [ 5 cos*®  cos® s O
PQ - [PR’J'&' e Prox\ge"l - cos@ sm & sin O

We can use the previous example to find a linear transformation that reflects a vector/point about a line
through the origin in R2.

4,

PR s (U2 + 2) [cosze smze]

sin 28 - o520
— ®= —‘
= lg 2649 * I) 7

05°0- | 2cosOsmO ]
2¢0s0Sin0 25O~

=) Hé -:2Pe-I:

Example 6. Let ¥ = (4,1) and let L be the line through the origin that makes an angle of 7/3 with the
positive z-axis.

(a) Find the projection of Z onto L.

g
0 cos” cosTsm § t \%" P ((4 G \% 4| bt
% |3 3 ¥ I ") 18 3 e 3
N Lo £ S R i Vg &+
(b) Find the reflection of Z about L.
cos F s\\az—;-r -3 8 g g_ . —2+€-
3 , 2 ( - -
- - ‘) - ® |
Hy - uw 2 € .|, > H% “ T 3 23 +3
3 s g T s 3 2 1
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Distance problems.

The distance between a point and a line in R? or between a point and a plane in B3 can be found using
projections.

Theorem.
1. In R2, the distance between the point Py = (x0,%0) and the lineaz + by +c=10is

_laxo + byo + |

Va2 +2 noreanl S
e D= (ak,e)

2. In R?, the distance between the point Py = (o, yo, 20) and the plane az + by +cz +d =0 is

D

D— |a:170 + byo +620+d[

VE+ R
Proof of 2. Choose P = (,9.,8) m He P(w , ond
ek BBy onbke R
o | P, = (o, 4, %) Pryee to °
n AN —ly
- (akd D =l projy PR

(1]

l (*o—x., Yo-Y,, 2o~ 3.\-(a.b,c)|
o Y

. ‘a-x,—ax, + b-ﬁ,.-bn‘ r cz-,—cz.‘

Jaz tbt+c?

?I = ("(n‘ﬁu %.)

b/c P' TS n H"» P(QM )

b A o _ |a7(o+b'jo +CZ‘9+0(|
a')(‘+‘5|+C?:,+ =, B

J at+b® +t
= -ax, -by, - cg =d. N

Example 7. Find the distance in R? between the point (1,—1) and the line z + 2y = 3.
A= |, b=2, c=-3

[|(0+2(—')+<'33, i L‘_‘L'. . 4
P = %+ 20 \rE s .
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Section 3.4: The Geometry of Linear Systems

Objectives.

e Write vector and parametric equations for lines and planes in R™.

e Express a line segment in vector form.

In Section 3.3, we saw how the dot product allows us to write vector and scalar equations for a line in R2 or
a plane in R3. Specifically:

e the line in R? through the point #y = (29, 1) and normal to the vector 7 = (a,b) is

7\'. ('i"... ;Z,\) = O er a(‘l—Xo) + ‘0(3-'30) =0 .

e the plane in R3 through the point Zy = (g, ¥, 20) and normal to the vector 7 = (a,b,c) is
i) ‘4 - -
R.(x - xo) =0 or a(u—x,) + b(&j"jo)-\- C(%"Zo) =0 .

In this section, we will explore how the equation of a line in higher dimensions can be written using a point
on the line and a direction parallel to the line, and how the equation of a plane in higher dimensions can be
written using a point on the plane and two (non-parallel!) directions parallel to the plane.

Suppose that & is a general point on the line through the point &, and parallel to the vector 7.

> ?—‘io A V&l-or an Hu‘y II‘V\L 'S A )‘m(ar MM“‘JPIL
of V.

-2 -
2“7‘-9'—' 'EV

/
== 7—2 = 2, + ":-;IP
°-"“‘5"V~ apn- Pi-. = ﬂ‘xml P"- + Pamukr-a(frep,‘-l‘ow

Example 1. Let L be the line in R3 through the point #; = (3, —1, 5) and parallel to the vector & = (-2,1,2).

(a) Find a vector equation for the line L.
-72 = ;o stV = ('s’,—l,s) + ¢ (—Z,\,z), N (3—2{',—“-6, S‘+2f)‘

(b) Find parametric equations for the line L.

2 = 3-2¢ , 5=—-[+£ ) 2= S +2¢%
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Suppose T is a general point on the plane through the point &, and parallel to the (non-parallel) vectors %
and 5.

= _ %,
L A VwLDr ;2—;20 v Hu_ P(a"" is O l'\wuxr

Example 2. Consider the point Ty = (1,4,0,—3) in R* and the vectors & = (2,—-1,1,0) and 7 =
(3,-6,5,2).

(a) Find a vector equation for the plane through Zy and parallel to both #; and .
X o= Kot L.V, + 4V, - ((,a,o,—s) + £, (z,—:, 1,0) + é,,(?,—é, 5',2)_
(b) Find parametric equations for the plane in part (a).
w = | +z{‘+3£2’ w44, -6t y * £, +st, , z2=-34+2¢,.

Example 3. The scalar equation = + 2y + 3z = 4 represents a plane in R3.

N
a) Find parametric equations for the plane. — “%e hue vormbles oy wcters -
pova

LGAI' 3‘3&. a.\d %’-éz. ‘TLl.u
® = 4—2“:,—3{:2.

(b) Find a vector equation for the plane.

—

2L = (4-2&,-3&1, t, l:,,) = (4,0,0) st (-2,0,0) + 8(-3,0,1).
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Any two distinct points &y and #; in R™ determine a unique line:
-~ - -2
e AR 22 o t(R-%)
\ - or c,.-:." ?: ;'—i. s
%o 2,0 T~ dicechon pualle] o
i
l| ; - (|—£) ;°+ %)—2' wece (o3 P”ﬂt
origin He loe.
Example 4. Consider the two points £p = (1, —1) and #; = (0,3) in R2.
(a) Find a vector equation for the line through %o and 7.
2 Xo + {:(32,-;‘2,) = (1,-\) + e(o-\, z—(-l)3 = (| ,—u) + %(-c,a),
. . L 3
(b) Write a scalar equation for the line in part (a). 2. E (o, 3)
e
From x=1-t and 3:-[4'((&) we  |ave 4 5’3_41
E=l-% and 4t = | + Y -

Thus

Wy gy o wmsee TN

To describe the line segment connecting two points £ and Z; in R™, we can restrict the values of the parameter
t to the interval [0, 1]:

- ||'vq,,2m,' -
2 J X Ror b(R-R) | ogkq
B 3 =1 o
*® 2, .
. 2= (-0% + t%, , osft<l

Example 5. Consider the two points Zy = (1, —4,—2,5) and & = (4, -2,7,2).

(a) Find an equation for the line segment from 7y to 7.

2= (1-0(1,-42,9) + £(4,27,2),

(b) Find the point on this line segment for which the distance to %y is twice the distance to &;.
2 -
24 t2% (e § of dobnce fon 7o bo %)

oLt

~—

<.

-

-
- x

A, x 7 (l--f:)(l,—G,-Z,r) * %(“,'21712)

i _4 2 &£ 2 -4 4
(3, 3:—3,3)‘*(3) 3/?1%

% =(3,’%, LI,S)
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Recall that a homogeneous linear equation has the form

a\‘X-\ + QIXZ* L + a,\xk = O

- —
or - 0:-76 = 0O, le.ﬂ. ?.:(a‘,az,...,c\n) anal ;2:(7(',7(“.- ,xh')'

Notice from this that every vector that satisfies a homogeneous linear equation is orthogonal to the coefficient
vector. In particular, any solution to the matrix equation AZ = 0 is orthogonal to every row of the matrix A.

Theorem. If A is an m x n matrix, then the set of solutions to the homogeneous linear system AZ = ( consists
of all vectors in R™ that are orthogonal to every row of A.

Example 6. The linear system

T
1 5 —-10 0 2| |z 0
3 -2 0 2 1| |z3| = |0
4 2 2 =3 1| |z 0
Ts5
has solution z7 = —2¢, 29 = 25, x3 = s +t, 24 = 28, T5 = 6t. Show that the vector

= (—-2t2s,5+1t2s,6t) < Solutions C,— yng‘.m!!l

is orthogonal to every row of the coefficient matrix for the system.

T %= (1,5, -10 0 2)-(-2¢, s, s+ ¢, 2s, 6¢)
2 -2¢ + 105 - (o(s+t) v o(2s) + Z(6¢)
= - 2L +W0s- 05 -0t + 12 = O.

A

e % = (?,—Z, o, 1, l) . (—26, ZS,S"I-E,ZS,G"-')
3(-2) - 2(2s) vo (se &)+ 2(2s) + 1(6¢)
~bE-Gs +4c +6E = O

————,

"

s

r3e % = (((,Z, Z, -5, l) . (—ZE,Z:) s+ € Zs, Gé)

: 8t + Ls +2s+2&6E —6s +6t = O,

——
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Section 3.5: Cross Product

Objectives.
e Introduce the cross product of two vectors in R3.
e Interpret the cross product geometrically.

e Study some properties of the cross product.

The cross product of two vectors @ = (uy, ug,u3) and ¥ = (vy,v2,v3) in R3 is AOL( : V(C"af)( vec"or
. = V&(‘D".
A X V - ( (Az_V; - Msvz ) “3\" - bl| Vz ) M. Vl - U‘I_VIX
U, U U U w, W«
= Vi Vil [V vy, v v,

(Note that the cross product is only defined for vectors in R3.)

Example 1. Compute % x ¥ for the vectors @ = (2,3, —2) and ¥ = (1,4,1).

27 = (G- (D, (DY =By | (- (30

7S
= (ll’—Q,S'\_

__.______,_.__—-

The cross product can also be expressed as a 3 x 3 determinant:

=+ =2 7
¢ ) k
. = - -
M X v - (}q u-,_ u} et (MIVS'Mgvz L - ((A|V3- ‘A3v|)“ + (u|Vz° szl k
vy Va V3
Lo - . -
Example 2. Compute ¥ x # for the vectors in Example 1. What do you notice? . WXV = = (7 x:)
D -
N ¢ ) - -
-y e - e -
Vexw = | (G | = -80 +2] #3k -8k -30 42
2 T -2
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Properties of the cross product. If @, ¥, and @ are vectors in R® and k is a scalar, then:

Liaxi= - (Txd) an R com pmutahive
-ut X -\7) ¥+ (&'x&’)) ‘Z)
(6313.7) ¥ (7&(5’)

2 x (%)

cross  predu ks Acshribuleg
addition

2. Ux (U+u) =

ever

4. k(i x v) = (ka)x ;," = S'C’_ale.f .M“”n‘p'&s &Lp\«( ‘m‘tcla"

5 4x0=0xd= 3
6. ixi= &
- - .
Proof of 1. Let 08 '-'(“\,'AI,M'{) and V © (V|.V1,V3). TL_.,\
- e -? -
T T e i) h
‘Jxv= U, W U = = Vi ViV =—-(V’<u
Vv, v, V; U, U, u;
-
Example 3. Showthat@'Jrkﬁ)xU:ﬂx . °
- - > = - [ ALY
_(24-k—\7))(v = ux?)%—(kvxv) - un.xv)J—lL( )
<4 -4 S
= ((7173 + WO = «uxv.

a - T:
(@) ixj= © Iy
{ o o = .
o | o "7 ?xi
L
7 T’—lz o - -
> 7 L) _ - N -
(b)]Xk_ = L LKJ
o ( © _\Z - ’f”,(iz
o) e ) ¢
- o - s
(c) Exi= ‘ e
o =)
|

=l QJ

14

]
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An important property of the cross product is that @ x ¥ is orthogonal to both % and 7.

Relationships between the dot product and the cross product. If i, 7, and % are vectors in R?, then:
-

1. ﬁ-(ﬁXU)ZO i.e. ': Y or“"’\nsom‘ {‘O U-:"V

2 faxaf = [P 19" - @9 [aqrenge’s  idembily

3. 4-(Txw)=(dx7?) @ S'ca.(ar ‘l'“PlQ pmolw.{'

4. i x (7% %) = (i - 0)F — (i - Db vechor  drplt product

=) - -
Proof of 1_ Le‘- A = (u| ) Mi'Mg) aﬂd v = (Vl 'Vl,vs) ) Pl-t\‘-v\ - .
-) - —9) _

- =
TLM‘(ODPC. }j and w XV  ale oru\osw’.

Example 5. For the vectors @ = (2,3,—2) and ¥ = (1,4,1) in Example 1, confirm that @ x ¥ is orthogonal
to both @ and .

rCCau: :K-\_I’ = ("l—q,g).

sl
s
sl
»
<}
~
Y

(1.3’,4) . (“,-‘r, S‘) =927 —-l2 -0 =0

(La, - (-4, 8)=1l-16 +5 =0

<
S
*J
»
<)
S
!

Thas  bobh 2 aud T are orl'kngwa( lo wxy
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The norm of @ x ¥ is the area of the parallelogram spanned by @ and .

=
A

C (Pre Lagrenge) [P RRIC I - (2-9)

: lluﬂ Wl - N (V1 cos?O
- ->
i R I (1= cos70)
= |RIZUTE st?®
>

Taree [ < 7N = 1ZNIDI 5106 [ aren o0

Example 6. Find the area of the triangle with vertices (1,2,2), (3,5,1), and (2,0,2)

pam"e(osmm.
(z,5,1)

5
®
n

% ” (|,-1,o) X (2,3,")”

- 3 ” (z,1, D)
() e oo 2 5

2

I

Similarly, the magnitude of @ - (¥ x &) is the volume of the parallelipiped spanned by @, ¥, and w
s

' »

Vo(uvwz,‘— INM‘SM' X area of base

-(i@hees 1) (1 )
(2L 2N Lcos ]

|3 (7))

Example 7. Find the volume of the parallelipiped spanned by (1,2,2), (3,5,1), and (2,0, 2)

11

H

\Jc[um =

- l (l,l'zB.((‘z,S"l\x (‘L,o‘z))l : l(("z,l)-(lo,-q'-m)

llo-s—‘w\ =l—(8” =1 8.
Theorem. The vectors i, ¥, and @ in R3 lie in the same plane if and only if @ - (¥ x @) =0
ie. He vdume spanned by X,V3 s zew, so Hese vechrs debenmine
o ﬁa" S‘—MCace mHu.r qur\



Spring 2023

Math 251
Section 3.3: Orthogonal projections in R3
The orthogonal projections of a vector & = (z,v, z) in R® onto each of the coordinate axes are given by:

z) = (,0,0) projection onto x-axis,

T (
projection onto y-axis,

Ty(f) = (Oa Y, 0)

T.(Z) = (0,0,2) projection onto z-axis.

Problem 1. Let # = (z,v, z) be a vector in R3.

(a) Show that the vectors T, (&) and T (&) are orthogonal.
(x,0,9)- (o,4.0)

2.0 + 0-3 + 0.0

@) T

= 0.

s TR and Ty®) e or Urogoral.

(b) Show that the vectors 13 (Z) and & — T,(Z) are orthogonal.
(u‘ o,o\) . (('u,.d,f) - (x,o, o))
(x.0,0) - (0, 4, €)

O .

1

@) (2- ()

\l

ﬂms "T_;()?) au‘( ia'-’f_;(;?) are oru\aap"\n'-

(c) Sketch a diagram showing &, T,.(Z), and & — T,,(Z).
Za
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Section 3.4: Transformations of lines in R"

Recall that a line in R™ can be represented by the equation

where T is a general point on the line, &y is a fixed point on the line, and ¥ is a nonzero vector parallel to the
line.

Problem 2. Let T4 : R™ — R"™ be an invertible linear operator, so that A is an invertible n X n matrix.

(a) Show that the image of the line £ = Zy + t7 in R™ under the transformation T is also a line in R™.
=\ _ =
'TA(X) TA(x, + {"\7)

Ta (;za) + ¢ T;(V)

%

Ax, + t+ AV,

(&Ca.uSL n 1-20 v oa VQC'Lr

n
" “Z, and AV s a nonzer

VCC"OI‘ n lR“ (S‘MC& A is TV\VC""’UQ\ ) H'\"S ftprc.wnl's a ll"‘\l n IR“

(b) Let A = B _14} Find vector and parametric equations for the image of the line £ = (1, 3) + ¢(2,—1)

under multiplication by A.
IR RS (R RS R B MR A
The  iwage of He lme = (1,3)+ t(2,-) s

He line 2=(9,—¢i) +{:(?,IDB_

The Pamw\cl-r.-c_ exv«al"bns afe xS +3E  and Y= q+lot.



Math 251 Spring 2023

Section 10.1: Constructing Curves and Surfaces Through Specified Points

Lines in R?

Any two distinct points (z1,71), (z2,v2) in R? lie a (unique) line ¢1z + cay + c3 = 0, where at least one of ¢;
and cg is not zero. This implies that the homogeneous linear system

zey+ yea+e3=0
z1c1 +y1ca+c3 =0
zocy + Y2z +c3 =0

has a non-trivial solution; equivalently the determinant of the coefficient matrix is zero, which gives the
following equation for the line through (z1,y1) and (z2,y2).

T oy 1‘
zy 1 1/ =0
T2 Yo 1‘

Problem 3. Consider the line in R? through the two points (3,1) and (5, —8).

(a) Use the determinant above to find an equation for the line.

x4 |
3 1| =0 = xll Ta-ul® '] |\=O
s -g | -8 1 s s -8

= x(l+?§—\3(z-§) ¥ (—zt.—s') = O

=9 qx+13—2‘1=0
. A

(b) Find the points where the line intersects each of the coordinate axes.

e e -

The e obosecls He axes of  (L0) ad (0,8)

n

(c) Graph the equation from part (a) to confirm that the line passes through the two given points.
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Circles in R?

The same method can be used to find a determinant equation for the unique circle
cl(m2 + y2) + ez +esy+es=0

through three points (z1,y1), (z2,¥y2), and (z3,y3) not on the same line.

Problem 4. Suppose the three points (z1,%1), (z2,%2), and (z3,ys3) all lie on the circle ¢1(z? + y?) + coz +
c3y +cqg = 0.

(a) Set up a homogeneous system of linear equations in ¢, ¢a, €3, and cq4 satisfied by the three given points
and a general point (z,y) on the same circle.
c\(x‘0—3‘) +Cyn C‘S‘j + Cq 20O
C(xPeygl) + G2+ Gy, v O
¢, (xryd) +Cx, +C3Y, + Cq 2O
C,(x;z"‘d;.‘) ¥ Co +C?':jz + Cg O

(b) The system in part (a) has non-trivial solutions. Write a determinant equation to represent this.

'

xt 1 y? o Y !
-x‘z > '2 b4 . ‘
i ‘ 2 . O
AP wy )
1.2 |
Ay l—‘j; Az Yz (,4‘ 6)
(c) Find the center and the radius of the circle passing through (2,—2), (3,5), and E&=8).
AR x 9 u
3 2 -1 !
=0
34 3 s l
§2 -4 +6 |

= SOx? + 100x + S'OST' "200.3 - jooO0 = O
‘;"-5 ')Lz-l-ZsL + ﬂt'aﬂ - 20

= (we)? ((d_zy‘ = 2¢ conle— = C-t,z> , rodins = S

(d) Graph the equation from part (c) to confirm that the circle passes through the three given points.
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Conic sections in R>

A general conic section in R? has equation
az® + cory + c;;y2 +cqz + 5y +cg = 0,
and is determined by five distinct points in the plane.

Problem 5. (a) Find a determinant equation for the conic section through the five distinct points

(Ila yl)’ (:1:21 y2)7 ($37y3)7 ($4, y4)1 ('T’57 y5)'

ny 5" 2> 4 i
xlz %4, ‘5(1 n,y Y !

Xzz ,('!‘jt %t A lAg { O

B gyt g gy
T
Ut 2

< ‘K;ﬂr S{ X Ye i
(b) Find an equation for the conic section through the points (0,0), (0,-1), (2,0), (2,—5), and (4, -1).

LA T S L g

o o o o o |

(v o | o -1 |

A o o 2 o | - e
4 -0 ¢ 2 -5 |
6 -4 ! 6 - {

=) 6O % + 37.'01.5 + 32031-3201. + 320 4 = O

+27(lj+ﬂ1-2x4,23:o

(c) Graph the equation from part (b). What type of conic section is this?

Qa Pml?o'ﬂ m
S At
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Planes in R3

A plane in R® has the scalar equation ¢;z + coy + 32 + ¢4 = 0, and is determined by three points not on the
same line.

Problem 6. (a) Find a determinant equation for the plane through the three points (21,91, z1), (22,92, 22),
and (z3,y3,23).

x U 2 |
x, Y, Z, 1
=0
n, U, % !
Ay Y &; |

x Y z {
2 | 3O
A =>  Ilx + by -12-] = 0.
{ { 2 \

(c) Graph the equation from part (c) to confirm that the plane passes through the three given points.

Spheres in R®
A sphere in R? has equation

a@+y?*+22) +er+ey+caztcs =0,
and is determined by four points not in the same plane.

Problem 7. (a) Find a determinant equation for the sphere through the four points (x1,y1, 21), (Z2,y2, 22),
(51737?;/3723): and ($4,y4,Z4)- 3

7(,7'+|j,z+2,z x, Y, 2, l

7L"+32+32 2

RS E B oy g, 2, | = O
'131"" ﬂ;‘z + 332 X3 Yy 23 [

2
Xy *ﬂq:”"g«.z X Yy Pa

(b) Find an equation of the sphere through the points (0,1, -2), (1,3,1), (2,—1,0), and (3,1, —1).

xt 4,5‘-4-21‘ ®n ) z |
s o T -2 |
i I 3 | { £¥o) =) ‘)tz"z-u + .32—‘2.3 + 2% ¢ g .
< 7 -1 o {
it 3 b |

(c) Graph the equation from part (c) to confirm that the sphere passes through the four given points.



