Section 3.4: The Geometry of Linear Systems Objectives.

- Write vector and parametric equations for lines and planes in \mathbb{R}^n .
- Express a line segment in vector form.

In Section 3.3, we saw how the dot product allows us to write vector and scalar equations for a line in \mathbb{R}^2 or a plane in \mathbb{R}^3 . Specifically:

- $\bullet\,$ the line in \mathbb{R}^2 through the point $\vec{x}_0 = (x_0, y_0)$ and normal to the vector $\vec{n} = (a, b)$ is
- $\bullet\,$ the plane in \mathbb{R}^3 through the point $\vec{x}_0 = (x_0, y_0, z_0)$ and normal to the vector $\vec{n} = (a, b, c)$ is

In this section, we will explore how the equation of a line in higher dimensions can be written using a point on the line and a direction parallel to the line, and how the equation of a plane in higher dimensions can be written using a point on the plane and two (non-parallel!) directions parallel to the plane.

Suppose that \vec{x} is a general point on the line through the point \vec{x}_0 and parallel to the vector \vec{v} .

Example 1. Let L be the line in \mathbb{R}^3 through the point $\vec{x}_0 = (3, -1, 5)$ and parallel to the vector $\vec{v} = (-2, 1, 2)$.

- (a) Find a vector equation for the line L .
- (b) Find parametric equations for the line L .

Suppose \vec{x} is a general point on the plane through the point \vec{x}_0 and parallel to the (non-parallel) vectors \vec{v}_1 and \vec{v}_2 .

Example 2. Consider the point $\vec{x}_0 = (1, 4, 0, -3)$ in \mathbb{R}^4 and the vectors $\vec{v}_1 = (2, -1, 1, 0)$ and $\vec{v}_2 =$ $(3, -6, 5, 2)$.

(a) Find a vector equation for the plane through \vec{x}_0 and parallel to both \vec{v}_1 and \vec{v}_2 .

(b) Find parametric equations for the plane in part (a).

Example 3. The scalar equation $x + 2y + 3z = 4$ represents a plane in \mathbb{R}^3 .

(a) Find parametric equations for the plane.

(b) Find a vector equation for the plane.

Any two distinct points \vec{x}_0 and \vec{x}_1 in \mathbb{R}^n determine a unique line:

Example 4. Consider the two points $\vec{x}_0 = (1, -1)$ and $\vec{x}_1 = (0, 3)$ in \mathbb{R}^2 .

- (a) Find a vector equation for the line through \vec{x}_0 and \vec{x}_1 .
- (b) Write a scalar equation for the line in part (a).

To describe the line segment connecting two points \vec{x}_0 and \vec{x}_1 in \R^n , we can restrict the values of the parameter t to the interval $[0, 1]$:

Example 5. Consider the two points $\vec{x}_0 = (1, -4, -2, 5)$ and $\vec{x}_1 = (4, -2, 7, 2)$.

- (a) Find an equation for the line segment from \vec{x}_0 to \vec{x}_1 .
- (b) Find the point on this line segment for which the distance to \vec{x}_0 is twice the distance to \vec{x}_1 .

Recall that a homogeneous linear equation has the form

Notice from this that every vector that satisfies a homogeneous linear equation is orthogonal to the coefficient vector. In particular, any solution to the matrix equation $A\vec{x} = \vec{0}$ is orthogonal to every row of the matrix A.

Theorem. If A is an $m \times n$ matrix, then the set of solutions to the homogeneous linear system $A\vec{x} = \vec{0}$ consists of all vectors in \mathbb{R}^n that are orthogonal to every row of $A.$

Example 6. The linear system

$$
\begin{bmatrix} 1 & 5 & -10 & 0 & 2 \ 3 & -2 & 0 & 2 & 1 \ 4 & 2 & 2 & -3 & 1 \ \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \ x_5 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}
$$

has solution $x_1 = -2t$, $x_2 = 2s$, $x_3 = s + t$, $x_4 = 2s$, $x_5 = 6t$. Show that the vector

$$
\vec{x} = (-2t, 2s, s + t, 2s, 6t)
$$

is orthogonal to every row of the coefficient matrix for the system.