Section 3.3: Orthogonality

Objectives.

- Introduce the definition of orthogonality in \mathbb{R}^n .
- Represent lines in \mathbb{R}^2 and planes in \mathbb{R}^n using vector equations.
- Project a vector onto a line.
- Write a vector as the sum of two orthogonal components.

In Section 3.2, we defined the angle θ between two vectors \vec{u} and \vec{v} as

The vectors \vec{u} and \vec{v} are orthogonal (or perpendicular) if

Example 1. Show that the vectors $\vec{u} = (1, -2, 2, 5)$ and $\vec{v} = (3, 2, 3, -1)$ in \mathbb{R}^4 are orthogonal.

Notice that in \mathbb{R}^n , the standard basis vectors $\vec{e_1}, \vec{e_2}, \ldots, \vec{e_n}$ are all orthogonal.

Pythagorean Theorem in \mathbb{R}^n . If \vec{u} and \vec{v} are orthogonal vectors in \mathbb{R}^n then

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2.$$

Proof.

A straight line in \mathbb{R}^2 can be described by specifying a point and a <u>normal</u> direction (that is, a vector orthogonal to the line).

Example 2. Write an equation for the line in \mathbb{R}^2 through the point (1,4) with normal $\vec{n} = (-2,1)$. Sketch a diagram indicating the point, the normal vector, and the line.

The same idea can be used to write equations for planes in $\mathbb{R}^3.$

Example 3. Write an equation for the plane in \mathbb{R}^3 through the point (2, -5, 0) with normal $\vec{n} = (1, 3, -1)$.

In Chapter 1, we introduced (orthogonal) projections onto the coordinate axes as examples or linear transformations. We can now extend this idea to (orthogonal) projections onto any line in \mathbb{R}^n .

Projection Theorem. If \vec{u} and \vec{a} are vectors in \mathbb{R}^n with $\vec{a} \neq \vec{0}$, then \vec{u} can be written in exactly one way as $\vec{u} = \vec{w}_1 + \vec{w}_2$, where \vec{w}_1 is parallel to \vec{a} and \vec{w}_2 is orthogonal to \vec{a} . Specifically:

$$\vec{w}_1 = \text{proj}_{\vec{a}} \vec{u} = \frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a}$$
 and $\vec{w}_2 = \vec{u} - \text{proj}_{\vec{a}} \vec{u} = \vec{u} - \frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a}$.

Example 4. Let $\vec{u} = (1, 2, 3)$ and $\vec{a} = (4, -1, -1)$. Find the component of \vec{u} parallel to \vec{a} and the component of \vec{u} orthogonal to \vec{a} .

The norm of the orthogonal projection (of \vec{u} onto \vec{a} can be written either in terms of the two vectors or in terms of \vec{u} and the angle θ between \vec{u} and \vec{a} .

Example 5. Let L be a line through the origin in \mathbb{R}^2 that makes an angle θ with the positive x-axis.

(a) Find the projections of $\vec{e}_1 = (1,0)$ and $\vec{e}_2 = (0,1)$ onto L.

(b) Find the standard matrix P_{θ} for the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ that projects each point onto L.

We can use the previous example to find a linear transformation that reflects a vector/point about a line through the origin in \mathbb{R}^2 .

Example 6. Let $\vec{x} = (4,1)$ and let L be the line through the origin that makes an angle of $\pi/3$ with the positive x-axis.

- (a) Find the projection of \vec{x} onto L.
- (b) Find the reflection of \vec{x} about L.

Distance problems.

The distance between a point and a line in \mathbb{R}^2 or between a point and a plane in \mathbb{R}^3 can be found using projections.

Theorem.

1. In \mathbb{R}^2 , the distance between the point $P_0 = (x_0, y_0)$ and the line ax + by + c = 0 is

$$D = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.$$

2. In \mathbb{R}^3 , the distance between the point $P_0 = (x_0, y_0, z_0)$ and the plane ax + by + cz + d = 0 is

$$D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Proof of 2.

Example 7. Find the distance in \mathbb{R}^2 between the point (1, -1) and the line x + 2y = 3.