Section 3.2: Norm, Dot Product, and Distance in \mathbb{R}^n Objectives.

- Define and apply the notions of norm and distance in \mathbb{R}^n .
- Introduce the dot product of two vectors, and interpret the dot product geometrically.
- Study some properties and applications of the dot product.

The <u>norm</u> (length, magnitude) of a vector $\vec{v} = (v_1, v_2, \dots, v_n)$ in \mathbb{R}^n is

Dividing a (non-zero) vector \vec{v} by its norm produces the <u>unit vector</u> in the same direction as \vec{v} . **Example 1.** Find the unit vector \vec{u} that has the same direction as $\vec{v} = (2, 1, -2)$. Check that $\|\vec{u}\| = 1$.

The distance between two points $\vec{u} = (u_1, u_2, \ldots, u_n)$ and $\vec{v} = (v_1, v_2, \ldots, v_n)$ in \mathbb{R}^n is

Example 2. Find the distance between the points $\vec{u} = (1, 3, -2, 0, 2)$ and $\vec{v} = (3, 0, 1, 1, -1)$ in \mathbb{R}^5 .

The dot product of two vectors $\vec{u} = (u_1, u_2, \dots, u_n)$ and $\vec{v} = (v_1, v_2, \dots, v_n)$ in \mathbb{R}^n is

Example 3. Find the dot product of the vectors $\vec{u} = (1, 3, 2, 4)$ and $\vec{v} = (-1, 1, -2, 1)$

In \R^2 and \R^3 , the dot product of two vectors is related to the angle between them. (This can also be generalized to finding "angles" between vectors in higher-dimensional spaces.)

Example 4. Find the angle between the vectors $\vec{u} = (1, 2)$ and $\vec{v} = (3, 1)$.

Example 5. Find the angle between a diagonal and an edge of a cube.

Notice that the dot product of a vector with itself is the square of the norm of the vector.

Properties of the dot product. If \vec{u} , \vec{v} , and \vec{w} are vectors in \mathbb{R}^n , and k is a scalar, then: 1. $\vec{u} \cdot \vec{v} =$ 2. $\vec{0} \cdot \vec{v} = \vec{v} \cdot \vec{0} =$ 3. $\vec{u} \cdot (\vec{v} + \vec{w}) =$ 4. $(\vec{u} + \vec{v}) \cdot \vec{w} =$ 5. $k(\vec{u} \cdot \vec{v}) =$ 6. $\vec{v} \cdot \vec{v} \ge 0$, and $\vec{v} \cdot \vec{v} = 0$ if and only if $\vec{v} = 0$.

Example 6. Use properties 1 and 3 above to prove property 4.

Example 7. Expand and simplify the vector expression.

 $(2\vec{u} + 3\vec{v}) \cdot (3\vec{u} - \vec{v}) =$

There are two important inequalities involving norms and distances in \mathbb{R}^n .

Cauchy-Schwarz Inequality. If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then:

 $|\vec{u} \cdot \vec{v}| \leq ||\vec{u}|| \, ||\vec{v}||.$

Triangle Inequality. If \vec{u} , \vec{v} , and \vec{w} are vectors in \mathbb{R}^n , then:

(a) $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$

(b) $d(\vec{u}, \vec{v}) \leq d(\vec{u}, \vec{w}) + d(\vec{w}, \vec{v})$

Proof.

Example 8. Suppose that $\|\vec{u}\| = 4$ and $\|\vec{v}\| = 3$. What are the smallest and largest possible values of $\|\vec{u}+\vec{v}\|$?

In plane geometry (that is, in \mathbb{R}^2), the sum of the squares of the two diagonals of a parallelogram equals the sum of the squares of the four sides. This result is also true more generally in \mathbb{R}^n .

Parallelogram equation for vectors. If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then:

 $\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2 \left(\|\vec{u}\|^2 + \|\vec{v}\|^2 \right).$

Proof.

Taking the difference of the squares of the two diagonals of a parallelogram instead gives a different expression for the dot product of two vectors.

Theorem. If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then:

$$
\vec{u} \cdot \vec{v} = \frac{1}{4} ||\vec{u} + \vec{v}||^2 - \frac{1}{4} ||\vec{u} - \vec{v}||^2.
$$

Proof.