Section 3.1: Vectors in 2-space, 3-space, and *n*-space Objectives.

- Introduce the some terminology and notation for vectors.
- Understand vector operations in \mathbb{R}^n geometrically and algebraically.
- Study some properties of vector operations.

A (geometric) vector is a quantity with a direction and a length, often represented by an arrow.

Two vectors can be added (geometrically) by placing the vectors end-to-end. (This is referred to as either the "triangle rule" or the "parallelogram rule".)

Multiplying a vector by a scalar changes ("scales") the length of the vector without changing the direction. If one vector is a scalar multiple of another, then we say the vectors are parallel. (Multiplying by a negative scalar reverses the orientation, but the result is still parallel to the original vector.)

We can view subtraction of a vector as "adding the negative of the vector".

If $P = (a_1, a_2, \dots, a_n)$ and $Q = (b_1, b_2, \dots, b_n)$ are two points in \mathbb{R}^n , then the vector from P to Q is

Two vectors $\vec{u} = (u_1, u_2, \dots, u_n)$ and $\vec{v} = (v_1, v_2, \dots, v_n)$ are equal if their components are equal. That is:

Example 1. Find the vector $\vec{u} = \overrightarrow{PQ}$ that has initial point P = (3, -1) and terminal point Q = (-2, 8).

Example 2. Find the initial point of a vector \vec{w} that has terminal point Q = (4,7,2) and is parallel to $\vec{v} = (-2,1,3)$ but has the opposite orientation.

Arithmetic with vectors (addition, subtraction, scalar multiplication) is done componentwise. If $\vec{u} = (u_1, u_2, \dots, u_n)$ and $\vec{v} = (v_1, v_2, \dots, v_n)$ are vectors in \mathbb{R}^n and k is a scalar, then we define:

Example 3. Let $\vec{u} = (3, 1, 4, -2)$ and $\vec{v} = (1, -2, 3, 0)$. Simplify:

(a) $\vec{u} + \vec{v} =$

(b) $3\vec{u} - 4\vec{v} =$

Properties of vector operations. If \vec{u} , \vec{v} , and \vec{w} are vectors in \mathbb{R}^n , and k and m are scalars, then:		
1. $(\vec{u} + \vec{v}) + \vec{w} =$	5. $k(\vec{u} + \vec{v}) =$	
2. $\vec{u} + \vec{v} =$	6. $(k+m)\vec{u} =$	
3. $\vec{u} + \vec{0} =$	7. $k(m\vec{u}) =$	
4. $\vec{u} + (-\vec{u}) =$	8. $1\vec{u} =$	

Proof of 2.

Example 4. Let $\vec{u} = (-1, 4, 6)$ and $\vec{v} = (3, 3, 3)$. Find the vector \vec{x} satisfying $4\vec{x} - 2\vec{u} = 2\vec{x} - \vec{v}$.

Theorem.	If $ec{v}$ is a vector in \mathbb{R}^n and k is a scalar, then	
1. $0\vec{v} = \vec{0}$	$2. \ k\vec{0} = \vec{0}$	3. $(-1)\vec{v} = -\vec{v}$

Proof of 1.

Г

A vector \vec{w} in \mathbb{R}^n is a linear combination of $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_r} \in \mathbb{R}^n$ if

Example 5. Find scalars c_1, c_2, c_3 satisfying $c_1(1, 2, 2) + c_2(0, 1, -1) + c_3(3, 1, 2) = (-1, 7, 7)$.

Example 6. Show that there is no choice of scalars a and b such that a(3, -6) + b(-1, 2) = (1, 1).