Math 251 Spring 2023

Section 1.1: Introduction to Systems of Linear Equations

Objectives.
e Identify linear and nonlinear equations, and systems of linear equations.
e Understand terminology related to linear systems and matrices.
¢ Solve simple linear systems and interpret their solutions geometrically.

o Introduce elementary row operations.

A linear equation in the variables x3, X2, ..., X, is an equation of the form

R%y, + Ay - + Q. A, * b ) wLut '\«01 a" H«L Qa; are Zero,

A homogeneous linear equation in the variables xi, x2, ..., X is an equation of the form

AN+ Ry N, +- ‘\—&«a.\‘x,‘:O, whare an a" uq_ a; are  zero,

Example 1. Underline the linear equations. Circle the homogeneous linear equations.

x+4y =9 W+3X@FZ=3 —3x+2y—%z=0
x1—@:0 xatxntxst+x=1

not I o

A finite set of linear equations is called a system of linear equations (or linear system). The variables are called
the unknowns.

Ay + QK + -0 4 A, X = b,

AW G X b 4k = by

-
"

O Wy + RugXg + -0+ A K - bm
A solution of a linear system is an assignment of a number to each unknown so that each equation in the
linear system is true.

Example 2. Decide whether each set of numbers is a solution to the linear system below.

x+y+3z=0
2x+y—-z=5
(a) x=0,y=0,z=0 (b) x=5y=-52z=0 () x=1y=22z=-1
0+ 0+3(0)=0 § r(-5)r36)=0 | + 2 23(-0)=0
AN +O - O =0 #S 2s) +(-5)- 0= % 20y +2-(-N)=¥
f\v"a 30[“]-,\0“'!, L 'H’\NLS & 90(.4'-.‘0“!: H"fS S a joluk‘om-'!
1
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The set of solutions of a linear equation in x and y is a line in the xy-plane, so a solution of a linear system

in x and y corresponds to a point of intersection between lines.

Example 3. Solve each linear system, and interpret the solution(s) geometrically.

« add -2xeg! fo 212: 5;\
(a) x+y=1 = |
2 +y=4 7“5_ 1%*3"'
- '-5‘2 -;(,4-\3’-\
» S‘olvz Qr 'j: \
W= "L .
. sub. o QZ" ond e Lo 2 v
"L—z =| (g;-z)
- x =3, lwes  tnlerseed ot
(b) x=2%=3 Jd -2xegl o eg2: a anique pomt.
2x—4y =5 s z
y =
YUn 2*—&3_'5 - )

//‘)

p, &
'/,///f;-23=3

no So'zWLFOV\S

"

( the systo

2 lhwes are pamuef
(c) 3x+y=2 » add -3xegl b 912:
9x+3y =26

3 vy =2
60

;S thcowg) sle. }-)

%\
2

run o prawehr for oy

let 5=t, Thon  ZIx+t=2
So 7¢-=—;'E+-§-.
T solabion 5 x:-%-{,.;%’j, )

are. H.M_ sane

-HQ' ‘\'\«LS
(Cofv‘ Py a(zvv,’ )

I

ve
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The set of solutions of a linear equation in three variables is a plane, so a solution of a linear system in three
variables corresponds to a point of intersection between planes.

Example 4. Solve the linear system and interpret the solution(s) geometrically.

x+y—z=4 (l_[wsa Hm %,M‘L‘ou.s anre e‘puﬂlﬂl'iul‘, o  Haw Jr’am.

2X+2y—-22=8 ( 1A
Onne 8 s Ve & l" L4
Ax + b4y — 4z = 16 P e mme

parsnibee slz:  leb M oy= s zet = xe -s+ b4

Solabton 5 He plane  me-sebrl, yus, 2od.

More generally, a linear system is usually solved by performing elementary row operations on the augmented matrix

for the system.

Xx+y+2z=9 T i 2 q 2x+05—4z:—2 -'2, o -4 -2
2x+4y —3z=1 2 4 -3 1 Ox+05+222 o o i 2
3x+6y—52=0 3 6 -5 0 Ox + yile =1 o 1 o |
\FMM 5'139“4.«\ u%wu_v\"w& an‘;( \

Elementary row operations.
1. Multiply a row by a nonzero constant.
CS. yA o -4 -7 R' — _l_z | o -2 -1 , £
2Ky 2
° ' 7 > o o ! 2 —E
o ! o | o | o [ 3
)
2. Swap two rows.
S
eq. ( o -2 -l R, €8 (I o -2 - ‘g
o o | z > | o« o % 5
o | o ' o o \ 1 -
3
3. Add a multiple of one row to another row. G
- (] o
- o -2 -l g 3R 428 : 3
o | o | ————— | o | o |
© o | YA o © l 2
/
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Example 5. Solve the linear system and interpret the solution(s) geometrically.
x+y+22=9 L R, = -2R,
2x+4y —3z=1
3x+6y—5z=0 ( i 2 Q
au%vw.ul-w( wl-nx (4] \ -7, -\
o o i 3
b 2 9
2 4 -3
3 6 -5 0 L@—*R,—ZQ;
{ ! 0 3
—
| &~ =,-1¢, Lol
| | 2 19 o o | 3
0 2 =7 -7
-5 o
S 6 l 0, —e, +%R,
l ﬁs"’fzs 3£| { | o 3
© | o 2
| \ 2 q o o | 2
o 2 -1 -7
o 3 -l -27
l K\ —_ 2"’21
l '27_ — Jipz | o] O |
o ( 0 2
T R S o o L3
o t % %
o 3 -l -%
TLI- S’o,u\."‘l’% ¢
— -
S’ﬂz Ry ~3R, x=\, 47, 2:%
o029
o | -7 - The  Hee planes wherseck

a-‘ HN_ POM}' (“'L'Z).
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Section 1.2: Gaussian Elimination

Objectives.
o Identify matrices in row echelon form and reduced row echelon form.
e Use an augmented matrix in reduced row echelon form to write the solution for a linear system.
e Apply Gauss-Jordan elimination and Gaussian elimination to solve a linear system.

e Understand the relationship between numbers of unknowns, equations, and free variables.

A matrix is in row echelon form when the following are true.

(a) If a row contains a nonzero number, then the first nonzero number in the row is a 1. (This is a leading 1.)
(b) Any rows that contain only zeroes are at the bottom of the matrix.

(c) If a row has a leading 1, then it is further to the right than the leading 1 in any higher row.

A matrix is in reduced row echelon form if it is in row echelon form and:

(d) If a column contains a leading 1, then every other number in the column is 0.

Example 1. Which of the matrices below are in row echelon form (ref)? Which are in reduced row echelon
form (rref)? Which are neither? 1y to

R T LR R A

r. e.-o. neitler r.e. "'p‘ nes Hher nes e

g{«.o“bl‘”—i

140 -3 1 -4 0 5 1&41 1300 2
001 2 0 1 0 2 001 2 00000
000 0 0 0 10 010 3 f"'“"C00114
C.C. e.c. \‘.Q.Q. ncl‘u-{r Miu,“"-
12 4 08 1000 5 10 200 7
10 -5 2 3 0100 0 01 1 00 2
00 0 1 4 0010 12 00 0 1 0 -3
00 0 00 000 1 —4 00 0 01 1
nect r.r.el. . cref
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A variable corresponding to the leading 1 in some row is a leading variable. All other variables are free variables.

Example 2. Each augmented matrix below is in reduced row echelon form, and corresponds to a linear system

in the variables x, y, and z. Find a solution for each linear system, identify the leading variables and the free
variables, and describe the solution geometrically.

o 0 0 i leaol.'Wi vars: x,u, 2 (tee vars: nome
a 0o@do 2
/V;@ 3] Solubon x=1 '?5:2’ 72=3 .

TLrs v He Forw‘- (',2,3).

Le“' 2=t < assign o pamvw."er ~ %L\ p«. Vo,

() FCODQ —03] lendongy oS 7, e vorst 2
0 00 O
d

2 + 4t = -3 = 2 =-4t-3
Pree .
\/o.riab\e Lg+2€ = O = 3 = ~2t
'nw, So(u“c'Ov\ iC ¢ < "4'&'3, 5:—2(’, ?t‘é.
Tl\t‘s S a l"_i:_\_'- i 'HM‘ - g‘(‘ms“m ’ fFac .
1 000
(c) 0130

lea,/ﬂ‘ vars: XA, p‘ep. vars! Z
ncongshant 7405"‘0-4!” " 3

Ox » 0'3 y0z=1. gbvl-uv\ has :;_So(uh\ou ‘
A
\QDAM‘; f
1)—1 -1 0 lead vars: % ree vars ‘oY, 2
(d) 00 0 0 K J
0 0 0 0

f 1\ Le"— 5: S, £—=t
frea vortables T x-s-t=o0 so x=s + t.
T solt o 3= 5 tt, 9=, 2= ¢t.

Thes 3o|'1; X a plam. in  Hee - Avensions
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Given an augmented matrix, an algorithm called Gaussian elimination can be used to find a matrix in row
echelon form that has the same solutions.

Gaussian elimination.

1. Identify the leftmost column that contains a nonzero number.

2. If necessary, swap two rows so that the first number in this column is nonzero. Call this number a.

3. Multiply the top row by % to create a leading 1.

4. Add multiples of the top row to each lower row so that every entry below the leading 1 is zero.

5. Cover the top row and repeat from Step 1.

Example 3. Apply Gaussian elimination to the augmented matrix below.

3
Vn,ui&i 0 -2 0 7 12 ‘l/“z”'zpl
lop. 4 -10 6 12 28
“"MP4—56—5—1 P2 -5 3 6 4]
o o | o -7/2 -6
LR&-—)R; o o S o -7 -4 |
2 -0 6 2 28 l R;— R;-3R,
0 -2 2 1 Vo -5 3 6 4
2 -5 6 -5 -1 o o | o U -6
o0 o o %4 1]
{
-4—-
ko= 7k | 2 =20,
\ -5 3 6 14 { 1 -9 3 6 14
o 7 17 0 o { o & -6

-5 6 -5 -1 o O 0 o &l 2

—
W\a'l’rik s i fow edreon Qm

-5 3 6 4

-2 . = 17 leaolmﬂ Vars. ave 7(“ 7(3’ X

S o - -
17 -24 Q\a. vars.,  ove AU, K
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While Gaussian elimination will result in a matrix in row echelon form, Gauss-Jordan elimination is an extension
that gives a matrix in reduced row echelon form.

Gauss-Jordan elimination.

1. Perform Gaussian elimination to obtain a matrix in row echelon form.
2. Starting from the bottom row and working upwards, identify the leading 1 in each row (if there is one).

3. Add multiples of this row to each higher row so that each entry above the leading 1 is a zero.

Example 4. Solve the linear system.
X1+ 3x0 — 2x3 + 2x5 =0 =
2x1 + 6x0 — Bx3 — 2x4 + 4x5 — 3x5 = —1 ; é ’7“ : 2z o ©°
5x3 +10x; -+ 15x5 = 5 e 6 . © Z ;
2x1 + 6x0 + 8xg +4x5 + 18x = 6 o 6 o o : o o
ausmko( mabrix L 25 — _\é Rz
i 3 -2 o 2 o e 0 ; -7 o 2 o O—T
2 oe st 4 -3 - o o | rd o 3 |
0 (o] g {0 (o] IS— ; o o o o S ( y
Ry~ R,-28, L R, R, - 3R,
Rq"?ﬂq—'lk'
1 -1 o -]
; g .2 © - © ol © i { rA ZO [~ o
° -t -2 o -3 - © o ° o o | .
O o ¥ o o 1S § . o 6 & o 3
°© o 4 g8 o 18 6 ©
| &= - | &= Roeze
-2 o 2 o o ( 3 o 4 2 =4 o
i 3 o o | .1 o O o
0 o { 2 o K4 ! \
o 0 o o o | -
o ] S o o 5y s 0 © ° o o o 3
© ¢ 4 3% o 13 6 °
| &2 28, P
‘ ; _z o z o o 7(| = “3(‘-45‘ - Z{
°© o { 2 o 3 |
Waq = —LS
© o o o o o o 3 '
© o o o o ¢ 2 4 e = 3.
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A linear system is homogeneous if each of the equations in the system is homogeneous.

Ay %, + Qi Ay + --- + QA An,, = O
i-e. .

aw“7(| + Ay, Xy + - + A .. = O

A homogeneous linear system in the variables xq, x2, ..., x, always has the trivial solution
X1=x = -=x,=0.

(Any solution where at least one variable is nonzero is called a nontrivial solution.)

Example 5. Solve the linear system. Hint: compare this system with the previous example.

X1+ 3x0 — 2x3 + 2xs =0
2x1 + 6x0 —5x3 —2x4 + 4x5 —3x5 =0
5x3 4+ 10xa 4+ 15x =0

2x13 + 6x2 +8x4 +4x5+ 18x5 = 0

5, xpot.

Lk %<7, =,
—ﬂw_.,\!

Ay = =3¢-4s-2¢
7(-3: "25

ts
(g

Xg = O

rober P resetzo) Ha

Qg N~

O oW

A}

Quyn

NQgrO

Fa o T ol ]

AR

©o0o0o0 €~£L4 o9 0 g)

~

<

8 \% o %'
‘s—‘-r-

3 . %7

5.2
e

R

oo0oGQC
OO0 0 Ww
QON‘C\

A

o
)
(2]

©O—o0 o

e Solubon s (olor 999, 0)'
crel [on. Excé. »
Yriveal So‘-’? .

Theorem. A homogeneous linear system with n unknowns and r nonzero rows in the reduced row echelon
form of the augmented matrix has n — r free variables.

Theorem. A homogeneous linear system with more unknowns that equations has infinitely many solutions.
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An alternative to Gauss-Jordan elimination is to use Gaussian elimination followed by back-substitution.

Gaussian elimination with back-substitution.

4. Replace each free variable with a parameter.

1. Perform Gaussian elimination to obtain a matrix in row echelon form.
2. Write an equation for each leading variable in terms of the other variables.

3. Starting from the bottom, substitute each equation into the equations above it.

Example 6. Use back-substitution to solve the linear system in Example 4.

Fr‘mvt Ex. 4.
—_— x, =
Wy + 322 ~ Loy 4-7.,(r o =
Ky =
7‘-3 +2Xq +;7(‘ = ' 7(—: -
LT ’/3
7(' = ’37(1 “’27(.-5 - Z?‘-y T[q_
'13: l"zxq—ng 2,
I
x, = A %
- Xy
Wy 2 =Zmg H 2oy~ LA
] xl‘
Ay = | —qu-S(—g) = ~2uy | A
|
We = 3 X

- Ba, + 2(- 2‘&,) -2xg
3%, -Gy -2ne

solu"t'op\ TS
-3e-bLgs -2¢
c

- 2s

(LI} Y

1

"

"
o & 0n

Discussion. For each augmented matrix below, identify the number of solutions for the corresponding linear

system.
1 26 0 =15 1 26 0 -15
010 -5 O 010 -5 0
001 3 8 001 3 8
000 O 0 0 00 1 2

Q"l’& \/onra‘aun ) Ao pm VM‘A'V(('
S’tS;L’w\ ) comfslé-\" Covm‘slo\" S'Gas['um

=) Mﬂ%‘l‘( s@luh\q,\‘ =) one solubion .

6

0
-5

0.1 B
0

2% 2P o=

) solu\,h\ov\s

C‘v\(ev\l: YL« ” 5‘68 LM)

o O =
|
=
o1

o
OO0~ N
o= O
= oo o
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Section 1.3: Matrices and Matrix Operations

Objectives.

e Recognize a rectangular array of numbers as a matrix.

Understand basic terminology and notation used for matrices.

Apply the operations of matrix addition, subtraction, and multiplication correctly.

Compute a linear combination of matrices.

Find the transpose and the trace of a matrix.

An m x n matrix is a rectangular array of numbers with m rows and n columns. A square matrix of order n is

a matrix with n rows and n columns. - ”
o Acaafwll

. | %3 2 o /b

2z : . .
R : is a X4 ml’fu(, c is a

Hove -wd-n‘x ep

order Z.

A matrix with one row is called a row vector (or row matrix). A matrix with one column is called a column vector
(or column matrix).

row Ve&lar'- [‘ 1 3 4] Coluww\ W.OL('-

e

Two matrices are equal if they have the same size and their corresponding entries are equal. If two matrices
have the same size, then their sum (or difference) is found by adding (or subtracting) corresponding entries.
A matrix can be multiplied by a scalar by multiplying each entry by the scalar.

Example 1. Simplify each expression.

3 0 -2 4] [2 1 -1 3] N
(a) 1 -1 1 —-1/+[0 3 2 1|= {2 3 o
4 2 6 0] 1 -5 3 2] s -3 q 2
7 3 0 217 [4 0 -1 1] 32 3 ( '
(b) 5 -1 24l |—0 1 2 2|=|@s _, o #%|-|
—2 2 2 -4/ [1 -5 8 O -7 = ¢ -4 v

)
o‘f@u‘ngn?}l"
2
{¢) 2|1 -1 O0|= |2 -2 o . i 2 t o |
-3 2 4 -6 4 3 M_Lt [g 4] "‘[o l o:(

s ded i
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If Ais an m x r matrix and B is an r x n matrix, then the product AB is an m x n matrix. The entry in the
ith row and jth column of AB is found by multiplying each entry in the ith row of A by the corresponding
entry in the jth column of B and adding the results.

: . § §H colamn
A g ][l o by e by
o | : i bzl sz o baa
—> | Qi Ry - Qg . X (AB); = aj1byj + ainbgj + - -+ + airby;
LOmi Qg amr_] Lbﬂ brj T b"‘\

bey
Example 2. Compute each product below (if possible).

— 4 -1 -1 < c
@ [203]{22:?;]_[‘1 7 7-]
(M(3) + D+ (DO =-2 D + @ + (VE)= &

le.
(7.')(3) ¥ (OX‘Z)A' ) = 4 ('0(&) + (o) (2) + (3)(3) = V7 ¢

3 4 -1
12 -1
(b) -2 2 5 = undelined.
51 E]E 3
ngml'n‘x 3x3m¥ﬁx

N f
dinnansions o ...".‘_L watkch

P

0O

S

w - |
O N B
=~
Y
o =
N
w

_
|

) 1
WY
QN -
w - L
}
LN
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A matrix can be partitioned into submatrices by selecting certain rows and/or columns.

an 3125 ais A
a1 axn| as| = "
21 22 7%
a1 a3 ( 933 A,
<&
an o a] |
a1 ap as| = |0,
a31 asx a3 T";
ajy v app | a
11} 312 | @13 o
ay | ax |axs| = C, <

{
asy | asz | as3

An.
ﬁu

ouefa w], A,

QN = [a‘sl an] s Au : [a33]

]

-
uL..re = [G“ Ay Qg

ek,

Qun

- -

Ca wLut c, | % , e‘-c.
a-“

Partitioning matrices into rows and columns allows some different strategies for matrix muitiplication. This is
particularly useful when only some rows and/or columns of the product are needed.

AB=Alb; by
a
a
AB=|"?| B=
an

Example 3. Simplify each expression.
-1

12 -1
@ 553l
2 0 3 3
Compare
1 27
0 -3

COMPAV'G

r
[a—y
N

—_

|
N
= O

b= AT, A5, - n’ﬂ,]
.

a,®
2.8

SR L]+ (4]

w-‘HA

lql' oo’uww\ ,p e, Z(a).

‘[“0 ' 1] +2[‘L { o -3—3:[% 2\ -4]'
witle

224 o J e 200,
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If A, Ay, ..., A, are matrices of the same size, and ¢y, ¢, ..., €, are scalars, then

ClA, + C1A1 + o +C“A“

is a linear combination of Aj, Ap, ..., Ap.

When B is a column vector, the product AB is a linear combination of the columns of A.

Example 4. Simplify.

2 1 1] |x 27‘—*«3+E
Seslly |3t
- .‘.8(34.5'2
] l \ Y 4 Vi { |
S ER R | R I ER R e

The last example suggests that we can express a linear system using matrix multiplication rather than an
augmented matrix.

e linear system:

2x+ y+ z=5
—3x + 4y =2
—x+8y+5z=0

¢ augmented matrix:

e matrix equation: /
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If Ais an m X n matrix, then the transpose AT is the n X m matrix is obtained by swapping the rows and
columns of A.

Example 5. Find the transpose of each matrix.

2 2 3 13 6
(a)A:[—SIG] (c)C=[01—2}
« [2 -¢ 00 1 - , o ©
A=la cC ={3 v °
6 -1\
3 6
1
3 34 0
(b) B=|g (d)D:P 5 2}
7 02 -1 [z 4 o
g'r‘-[! 3 S ‘l] D ™q ¢ 2
c 2 -1

noke 'D‘r-‘—'D, s D7 Sejw\mjrﬁc
i

Properties of transposes.

L (A = A 3 (k)= kAT

2. (AxB)T= AT +g" 4. (AB)T = f’[51'%\1— / sl Hab He opler
( i s S’wn?pca[!“-

The trace of a square matrix A, denoted by tr(A), is the sum of the entries on the main diagonal. (The trace
is undefined for matrices that are not square.)

Example 6. Find the trace (if possible) of each matrix in the previous example.

{',( A MPL {r K are uw\D(prvup( , LQCRIU;{_ A a-\o& fg ore

V:__l_' Sgnare amabrices.

(D= 1414123 (D) 35D = 7
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Section 1.4: Inverses; Algebraic Properties of Matrices
Objectives.
e Learn the algebraic rules for matrix addition and multiplication.
e Understand zero matrices, identity matrices, and inverse matrices.
e Find the inverse of a 2 x 2 matrix.
e Use an inverse matrix to solve a linear system.

Compute powers of matrices and matrix polynomials.

Many of the rules for matrix algebra will be familiar from previous mathematics classes.

Properties of matrix algebra. Lower case letters refer to scalars; upper case letters refer to matrices.

1. A+B= B+A 6. a(B£C)= aB *C

2.A+(B+C)=(A+‘B)+C 7 @ib)C= oC t bC
3. ABC)= (A®)C
CAB:C) = ARt AC
5. (4£B)C= AC:BC 0. aB0) = (aB) C = B(aC)

otC) = (ab) C

Notice however that matrix multiplication is not commutative. That is, AB # BA in general.

Example 1. Let A= E ﬂ and B = E :ﬂ Compute AB and BA.

P R R

N "
] F ral -
| o,

U
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The m x n matrix where every entry is 0 is a zero matrix and is denoted by 0., xx.

_ |l o o o
eq . O’-"3'[o o o] , O|:4=[o ®© o o]

Properties of zero matrices. cealar  wmalmx
¥ v
1L A+0= A 3.04= O
2. A—A:O 4. If cA =0, then e;u/.u c=QO eor A=O_

The last property listed above is called the zero-product principle. This is not true for matrix multiplication,
as shown in the previous example

I R R T Py Y

It is also incorrect to cancel factors in a matrix product.

11 3

pe= [V 5 312 t] Thas BB =AC,
nc=[} .'}[f. fz}[;‘ f] but BEC.

A square matrix with 1 on the main diagonal and 0 everywhere else is called an identity matrix. This is denoted
by either I or I,, (to specify the size of the matrix).

=07, - lzgl]ek

Example 2. Let A — [1 1}, B= [‘31 ‘2], and C = [ 31 _32] Compute AB and AC.

Properties of identity matrices. Let A be an m X n matrix.

L A= f) 2. InA= A

Example 3. Confirm the properties above for the matrix A =

1 -2
-3 4.
5 —6

D
._\
n

b2 r o v .2
. A l:o ‘]: =3 4 = A

§ =6

rqloo U 4 ) 2
- o 1 0 -3 4 -3 4]214,
o o | s—"-b .

A
T
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If A is a square matrix, and B is a square matrix such that AB = BA = I, then we call A an invertible matrix
(or nonsingular matrix) and we call B an inverse of A.

Example 4. Show that B = [_53 _23] is an inverse of A = [g g]

w3 395 20=[0 7]
e [5205 5 )0 T

-1
AR=T and BAI 5o B4

If A does not have an inverse, then A is not invertible (or singular).

0 aty e b]
] is a singular matrix. 6:/\299 : A =l e A) .

Example 5. Show that A — B 0

S [+ 21[2 3] - 16 51

Thug: o +0c = *\\ conbradichou !
"4

lb + od = b=o

2a + Oc =0 =

We hae Lud o cddvdichon, so A has o wverse.

Example 6. Show that if B and C are both inverses of A, then B = C.

’gcs GSSMP‘%-’\, AB=T and CA =T, TLQ,,’-
B=1%:=(cA)B:-c(A®) =cT=C,
The previous example shows that if A is invertible then its inverse is unique. We denote this inverse by A~1.

o 22 :[53] G s

Example 7. Show that if A and B are both invertible and have the same size, then (AB)™! = B71A~1.

(A)( 'A) = A(BeNA" = A147" - 447" - T
(w4")(45) = B'(4"4)% - 8"'T® = B'g = T.
'TLWLS A-B S iVWQf‘!‘IL‘L’ gv\('/( @(‘By' z 'B-'A-'_

W

T

1

I,

"
Q
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The matrix A = [z Z] is invertible if and only if ad — be 5 0, in which case

A A S [
ad-be | -¢ @
(The quantity ad — bc is called the determinant of A. We study determinants in Chapter 2.)

Example 8. Decide whether each matrix is invertible, and find the inverse if possible.

@a=[5 T @)= (O-(DED < 6-6 =0
A s et iwverhble. (h. A is smsuhr)

(2]

=<

—

g 5
GIOEROIOE s’r3<=zj.}

1

) =3 1] ek (5)

Ak BZO, so B has

. A
Qn, e "

% 1 i -|] 5 -k
= ) > | s s
8 2 S > 2

Recall that a linear system can be written in the form A% = b. If the coefficient matrix A is invertible, then
the linear system can be solved by multiplying both sides of the matrix equation by A™1.

Example 9. Solve the linear system. i’

Sr+y =2
dr+y=-2

£ A?Z’=_Q,Hu\

N HEE )

= A-'-E

; -
2 - AT

o] "

1
s =
 —
1"
Wy
—

1
e 1
\t‘n P\
\

YA pY-

1"
1
N
L-_.—_—-J
M~
~
R
»
~
s
1
A\l
.Y
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A square matrix can be raised to any nonnegative integer power.

A°= T, A'= A A= AA, A= AAA

An invertible matrix can be raised to any integer power (positive or negative).
?‘

(A"

Powers of invertible matrices. Let A be invertible, n be an integer, and k be a nonzero scalar.

1. A~V is invertible, and (A1)~ = A
2. A™ is invertible, and (A™)~! = (A"

3. kA is invertible, and (k4) 1= L' A7 = ‘_k A

If p(z) = ap + a1 + agx® + -+ + a,z™ is a polynomial and A is a square matrix, then
- 2z
P(A)- aoI +a‘A +a1A b oeue +a,\A“
2 0 9
Example 10. Let A= 41 and let p(z) = z° —z + 3.

(a) Compute A%,
3 1 o 72 © 2 o -
=[]

(b) Compute p(A).

p(A\=A1’A*3I=[“: T]Z ]"3[ ] 3 3]

Recall that the transpose of a matrix is found by swapping the rows and the columns of the matrix.

Example 11. Show that if A is invertible, then AT is invertible and (A7)~} = (A~1)T.
(AT (AAY s 1T T
(ANTAT: (AT - 1T
Todoe, (AT = (A7

12

~
Y
H
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Section 1.5: Elementary Matrices and a Method for Finding A~!
Objectives.
e Write each elementary row operation using matrix multiplication.
e Find the inverse of a given row operation.

e Use row operations to find the inverse of a matrix or show that the matrix is not invertible.

Recall the three elementary row operations:
- mlhpls onL  (ow 53 a  conshant

- 9wap bwe  rows

- add o Mu“‘c‘pla. op ote MOW "0 a*”“"(.( fow,

Two matrices A and B are row equivalent if A can be transformed into B using elementary row operations.

e} | o tL o o
& . 4 o o a‘,\A o 1 o are  row %u?valen‘“ .
o o ( e o |

Ged RO, Hee R—%LEL
An elementary matrix is a matrix that can be obtained from an identity matrix using a single elementary row
operation. Multiplication by an elementary matrix is the same as performing an elementary row operation.

Example 1. What elementary row operation is equivalent to calculating EB for each matrix £ below?

4 olou.ul row'Z
£ B.

1
(a) E= |0

o N O
= o O

(c) E= < SW“" ow | ol rou3

o
o= OO

0
0
0
1

OO = O
OO O

R,— 2R, R, >0,

1 00 1 0 0] « Mu“‘c‘.olj tows | "5 I
() E=|-3 1 0|& add -2 Lo d) E= [0 1
0 01 00 1

Pwl fo row 2

R, R,-3R Ri— R,

\y
|1 ° e | ] \
-3 ' o 2 = -1
eﬂ o 0 1 3 | 3 !
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Each elementary row operation can be reversed by applying another elementary row operation.

@, t o RL—-)RN‘SI;!. I o R, — R-5R, e o
o | s ’ o |

Example 2. Find an elementary 3 x 3 matrix that corresponds to each row operation, and find an elementary
row operation that reverses each row operation.

e[em% M“ﬁ‘x

(a) multiply row 3 by —% invese  rouwy o(xmhou\

. \ o o
1
© 0 =% le. M“‘if’ls 53 “ca‘[:mm'-
(b) swap row 1 and row 2
o o
t o o R.«R
\ 2
-2, z\ & K‘L o o 1 '
ie. Swap fowsg a.aa,h., 1
(c) add 4 times row 2 to row 1
t L ©

e t.° Ry— R, - 4R,

Q.
subbret 4R, Powm R,

. R =R +6R,

Equivalence Theorem. If A is an n X n matrix, then the following statements are equivalent.

1. A is invertible.

-y
2. A% =0 has only the trivial solution. 4 m(e A ;? =0 “l‘ﬂ“jg has 'I'LL
0 A & Mverkl)lz' Han
'2:.‘3 VS Hv. e:l_!j golu"‘loh

3. The reduced row echelon form of A is I,.

4. A can be written as a product of elementary matrices.




Math 251

Spring 2023

The Equivalence Theorem says that if A is invertible then there is a sequence of elementary row operations
that reduces A to I,,. The same sequence of row operations applied to I, results in the matrix A~1.

1. Form the matrix [A|l,].

2. Apply elementary row operations to reduce 4 to I,,.

3. The resulting matrix has the form [I,|A7}].

Inverting a matrix. To find the inverse of an n x n matrix A:

Example 3. Find the inverse of A = {

. S'"ar"

[EE Ny
O Ot o

with [A l I]_‘

| Z 3 1 o p

72 5 3 o ¢ o

t o] b1 0 o 1
2."‘»--)23‘"2\

| 2 3 i o

o -3 -% t o

Ry — Ry +2R,
{ 2 3 | °
(] | -3 -1 {
0 o] -'l -S 2
l 2-5 - - 23
{ 1 3 { o
| °3 -7 |

oo W W
| R

L Rl_’ R;“'gz}

R‘ = R‘ -323

{ 7
(»] \ (o]
o o {

-14
13
s

6
-S

-2

l R, — R, -2R,

{ [ o
o | o
o o l

oo Dok [TIAT]

(n*utpore, :

—40

A= (8

-40

[
s

l6
s
-1

b
-5
-1

q
-3

3
-3

-

q
-3
=1
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The algorithm for finding an inverse matrix can also be used to decide whether a matrix has an inverse.

11 -3
Example 4. Determine whether A= |2 3 4 | is invertible and find the inverse if possible.
3 5 11
t + -3 t © o
2 3 | o I e
3 s ylo o
R.L—-} KL'ZQ‘
zs-a Q.S..gg' A w-& S le' .‘V\VOJ‘LiUQ,
t -3 { o ©O
z ! lo -2 t o LQCOW\SC we CAN\OI’ reduce A-
2 20| .x o #I|
J‘O :E'S MS‘AS @[CMMMI'W\A
J/ R-s"a Rs"zﬂ‘l
g 198 ogj‘a,l‘iowg.

Example 5. Decide whether each homogeneous linear system has nontrivial solutions.

21 + 279 + 373 = 0 B T A n, o
(@) o 4 Bus 4+ 355 = 0 1§ 3 x2 \|=/ o
1 o g X3 °

T +8x3 =0

’W.q, cmwru’em" W"ﬁ')& N .‘nvefl-.uv. (Ex. ’s’\ , e H—Q
ﬁasltw» hag t'f_'_l_!g "'L( {-n\iq‘al S’a{u“‘m«.

(b) T1+x9—3x3=0 | | -3 X, .
221+ 3xy + 423 =0 7 3 g Ay - o
31 + 529 + 11z =0 T S 2, o

/IL Cpblp.‘ct‘eml' w"ﬁ' B vx’g_"' ivwefl‘tu’. (E)f ‘(), o H»u*e

ane MAMV'\Q' Sb’u,HOUW .

4
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Section 1.6: More on Linear Systems and Invertible Matrices
Objectives.

e Use an inverse matrix to solve a linear system.

e Understand properties of invertible matrices.

e Determine all vectors b for which the linear system AZ = b is consistent.

Theorem. A linear system has either no solutions, exactly one solution, or an infinite number of solutions.
- - 2.7
Proof. S:App"i', %€, and X, are o(.‘g'-mc" $o{u41'0v\s op A ;Z = b,
- — 7‘-0{ -
Le"(— Xo = %7‘_;?7—' 'ﬂN.v\ %}K; M ul#xl AISO
- -» = -
Ax. = AR %) = A% -A%, = b5-b = 0.
I0 ke s any  scalar, Hon -
-3 -7 -2 -
A(i’.+kx03=A§.+kA57-,=b+k'0=b+ .
’n\u:l’ is, ;Zu * k;zo S a soln Dp A;l.’:—g ar any le.
’rln.r Q,n’ ‘H\;S S‘l‘!'.uo\. L\AS W\QM: wAmap soluHO“S’

Theorem. If A is an invertible n x n matrux and bisannx1 column vector, then the linear system A% = b
has the unique solution & = A~15.

- -5
o= b

From the previous theorem, if A is invertible then the system AZ = b can be solved by multiplying by A1,
Example 1. Solve the linear system.

6x1 + 2x9 +3x3 =4 6 2 3] 4
3x1+ o+ 23=0 _;> 4 1 f K = (o}
o 3

10z + 3z9 + 423 = —1 { 4 -t
6 71 3 . -1 -1 3
’ﬂ,.,’ el Se Oc A; 3 ( L'( Y3 A < 2 L -3
o 3 I -1 e
T[/u L7 o ' 4 -
5 2 | = | 2 6 -% o| = | 1t
R (I o -1 4
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Sometimes we may want to solve several linear systems that have the same coefficient matrix A. For instance,
supose that we want to solve all of the systems:

.ﬁ
—-’ —_7 _ —,
x = b, A'x. 'bz , , A ;2‘ = bk

If A is invertible, then the solutions can be found using matrix multiplication.

$7, =A%,

- -1
R :Ab, R AE

An alternate approach (which also works when A is singular!) is to solve the systems at the same time by
row-reducing the augmented matrix

AR A e A E A EA AR EN |

Example 2. Solve the linear systems.

1 — 322 +4x3 =95 1 —3x2+4x3 =1

b
(a) To — 2x3 = —2 ( ) T2 —2x3=1
221 — 310+ 223 =4 2x1 — 39 + 223 = —1
V-3 4 s '
— +
0 t -1 -1 0 Ql zl 321

]
W
L~

v

Qo

-3 4 3 [
-2 (-2 |
o 0 -6

-1 +28, x, = -2+2¢.

?bs’Lw\ oS ;‘nco“;rslm‘y 3o
H—(ﬂ, oe o Splul‘t‘oy\"

Pulr- (b):
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Our definition of an inverse matrix B = A~ requires that both AB = I and BA = I are true. However, it is
enough to know that at least one of these equations is true.

Theorem. Let A and B be a square matrices. If AB =1 or BA=1, then B = AL

Example 3. Show that B = A~! for the matrices A and B below. (These are the matrices from Example 1.)

6 2 3 -1 -1 1
A=13 11 B=|2 6 =3
10 3 4 1 -2 0

Fow Mo Tho abwe, we only wmed b shaw AB=T (o0 B4-T).

6 2 3 S PSS B | o o
AR=1] 3 « 1 1 6 -3|=lo v o|=T
o 3 y 1 -2 o o o \

—m«rche s - A"' (o.(so, A=TF"

Equivalence Theorem. If A is an n x n matrix, then the following statements are equivalent.

1. A is invertible.

2. A% = 0 has only the trivial solution.

Qows Sect. 15 (P‘%‘ z)

3. The reduced row echelon form of A is I,,.

4. A can be written as a product of elementary matrices. J

5. AZ = b is consistent for every n X 1 vector b.

. . new  condibions.
6. AT = b has exactly one solution for every n x 1 vector b.

Theorem. If A and B are square matrices and AB is invertible, then both A and B are invertible.
Proof. Suppose Xo is a st do BX=0, The

(AR % = A(8%) = Ao=3.
Beeruse AB 1 werkble, He syshun  (AB)Z =8 s only He el
Solubton . Thus %oz 0. Tal
%lul-v)ov\, 10 T o .‘mverkUL.

'Ei = B’ has oiB e -‘-Nbv‘d‘

’

\ s
Thas A= A(EB—) - (AB)R'  is imwerkble.
produck off  wverkole  wabries s wwerkble .
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Problem. Given an m x n matrix A, find all m x 1 vectors b for which the linear system AT = b is consistent

If A is invertible, this problem is easy. (AZ = b is consistent for every m x 1 vector b.) Otherwise, row
operations can be used to determine which vectors I;give consistent systems.

Example 4. What conditions must by, ba, b3 satisfy for the system below to be consistent?

Tr1 — 31’2 + 4283 = b1
To — 2333 = b2
2z1 — 3z + 223 = b3

A

b;“ Z,L' - glﬂl =O) So bs = 25! +gbg_.
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Section 1.7: Diagonal, Triangular, and Symmetric Matrices

Objectives.

o ldentify diagonal, upper triangular, lower triangular, and symmetric matrices.

e Understand properties of diagonal, triangular, and symmetric matrices.

Some matrices are easier to compute with than others, either because they contain a lot of zeroes or because
or their symmetry. These matrices will be important in some of the topics we study later in this course.

A square matrix A is:

° o
e diagonal if the only nonzero entries are on the main diagonal. )\;]
¢ o

i.e. Ay =0 £ i.’fj

e upper triangular if every entry below the main diagonal is zero.
-C oy o
ie. Qi =0 L7y 0 o

e lower triangular if every entry above the main diagonal is zero.

o o
i.e. Qi =0 .'Q i<y m

e symmetric if A = AT,

i.e. a':j ®= QA

N
Example 1. Identify each matrix as diagonal and /or upper triangular and/or lower triangular and /or symmetric.
2 0 0 0 4 1 00 2 2 4 1 00
0 -5 0 30 0 6 0 01 1 010
4 00 -3 8 3 0 0 —1
d&‘aaom‘ 9' I
A‘ %WML“«C lower 4 wpper 4 None o ““-Sc
upper 2, ( - )]
| s, Wo! &Lwc .
Sywan
1 40 -3 1 2 3 4 2 000 0 00O
011 2 2 3 41 0 000 0 00O
000 4 3 41 2 0030 0 00O
0 00 1 4 1 2 3 0 00 3 0 00O
upper 4 g‘d‘”mrc 30M|‘ d‘h‘ﬁom"
wepwr 8, u‘opf A )
lower 8, lower & y
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An n x n diagonal matrix can be written in the form
Cd, @ o
o dy -+ ©

. ¢ o --. d-\

This matrix is invertible if and only if every entry on the main diagonal is nonzero, in which case the inverse is

s ) s o @
%, °
-t o 44 - °
1
D: : SN . R rovidedl  nowme op He d; valnes
' Yy s zero,
L °© o . 4-'\ !
Example 2. Compute each inverse (if it exists!).
2 0 0] 5 ° e 10 0] '
@loio =]e 3 e (b) [0 1 0 =_DNE!"'
0 01 o © | 0 0

If k is a positive integer, then D* can be computed by raising each (nonzero) entry in D to the power k.

Example 3. Simplify each expression (if possible!).

" = o s - .

2 0 0° [2°,5, ® gy 10 0]° | o o

00 1 o 0 o @ 0 0 0 °© 0 o

200" [= o o 10 0]7" o
® 030 =7 g o (d |01 0] = TDNE-

0 0 1) 6 o 1 0 0@ "

~ cavw\o" Q.\.\al ']7 ) So
. 4

Multiplication by a diagonal matrix is also relatively simple. we alse C“"‘""l' p"’\’( D .
Example 4. Compute each product.

-3 0 0] 1 1 -3 -3 mm”‘dp‘tg R, by -3
(@ [0 2 0| |0 5= o 1o ie. 1ol 2, b T

0 0 1) |3 4 3 4 Maml Tl T U9 :

b
4 -1 2][100] T4 -4 & malbigy 2y by
b) |8 1 1| (0 4 of= . .
®) 2 1 i] 002} H L{ ;.] e malliply - C, oy !
u C,/L bg L(
) " Cy by 2
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Properties of (upper) triangular matrices. Note: similar properties hold for lower triangular matrices.

1. The transpose of an upper triangular matrix is lower triangular.
2. The product of two upper triangular matrices is upper triangular.

3. An upper triangular matrix is invertible if and only if every entry on the main diagonal is nonzero.

4. The inverse of an invertible upper triangular matrix is upper triangular.

1 3 -1 3 -2 2
Example 5. Supposethat A= |0 2 4 |andB= |0 0 -1
00 5 0 0 1
13 %
(a) Show that A~t = [0 2 —%
1
0 0 =
(3 -1 I % % I & o " v -k 7’5’
g i 2 o 5 'y; z Y ! o ' So A - e ji ’2/5'
o o \ 0 L
% : © s ).

vo3 [z -2
A'@ = o 1 4 o ©0 -l
© s

0

L
o

[} ]

= Yo o _;(le T
BA [ :

0 o | L o ©
Proof of 2. S‘uﬂoost A,B are  wpper -‘n‘o-naulorl anol ’e} C-= A‘g .
e L7y, Hen

Cy

+--- 4 a;nb

a-l'dblj + aizsz “j

A b‘i LR e (A1) I°(f.—~)j + aiabij oo 4 a,;,\b,\j

W\J

Ry 20, -, Ry = O bij =0, - bu®
= @.
—ELCG.M% ch =0 whin i75 ) 3 H‘\L wsal'n‘x C ) weper "‘ﬁanadar
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A %Mlﬁc & A= AT

Properties of symmetric matrices. If A and B are symmetric n X n matrices, and £ is a scalar, then:

1. AT is symmetric.

2. A+ B and A — B are both symmetric.

3. kA is symmetric

4. AB is symmetric if and only if AB = BA.
5. If A is invertible then A~! is symmetric.

6. If Ais invertible, then AAT and AT A are invertible.

Proof of 2.

(A« E)@ P A Byt A e Bos (AE)
tow \'/' Cp‘J O'p A*‘E
The next example illustrates property 4 above.

Example 6. Compute each product.

1 2][-4 1 -2 1 2][-4 3 7 AR 0 55“““"“'“’
(2) [2 3] {1 0]: s 1 () [2 3] [3 —1}2 t 3 s>
L AB=BA.
-4 1i (1 2| -% =S -4 3 1 2
o [ 8- Sl P e
1 )
One final observation is that for any matrix A, the products AAT and AT A are both symmetric.

(AA:)‘r: (AT}TAT : AAT L se AT Supamnebric

SWot': order wlum u.sihs “"‘hnfpos(,!!!

2 0
31

’ o -\ 25 s 3
- [0 3 1 [T A
3 o - 35 3 7
TA: % (—S Z = 3
4 [-\ 3 ZS ' S_S 7 '|3°

Example 7. Let A = [ —31] . Confirm that both AAT and AT A are symmetric.

w
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Section 1.8: Introduction to Linear Transformations

Objectives.

e Understand an m x n matrix as a transformation from R™ to R™,

e Identity the standard basis vectors for R™ and the standard matrix of a transformation.

e Study some simple linear transformations.

The set of all n x 1 column vectors is denoted by R™. In this section, we interpret multiplication by an m x n

matrix as a function (or transformation) from R" to R™.
= ANg

¢—r w|
x”, X2
WS X |
domain = IR ' 2
Example 1. The set of linear equations codomain = |R

wy = x1— 219+ 413 — 224
wyg= 31+ z2—2234+ 24

wg = —6x1 + x3— T4
defines a linear transformation T4 from R* to R3.

(a) Express the transformation T4 using matrix multiplication.

of -
—v) €
= w - 3 | - 1
TA ( ® 2 1 \ « vJLl-fl A n
Wa - 6 o} \ -1 3
Xy
1
(b) Find the image of the vector Z = _21 under the transformation T'4.
0
{
T ) |- ¢ -7 ’ )
-1 B -
2 - = 2
0 I Y o

wundor

Note: The linear transformation in this example can also be written in comma-delimited form as

T(x1, 22,23, 1:4) = (CL‘1 — 2x9 + dx3 — 224,31 + T3 — 223 + x4, —621 + T3 — $4).

W, Wl

p—

-
x
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Two simple matrix transformations are the zero transformation/operator and the identity transformation/operator.

-

’ro(;z)’02=o T]’_(;Z)=I;Z=7—Z
\\ZCU'O h‘umsﬁ»rmhov\“ ‘\{o(mh'j “V‘N\S‘:rm‘\'m !

Properties of matrix transformations. If T4 : R™ — R™ is a matrix transformation, ¥ and ¥ are vectors in
R"™, and k is a scalar, then:

1. TA(6)=6 4 ‘HM_ Zer0 vec'-or/oﬂ‘gt"\ s “ML”%“‘ L3 a M*ﬁ‘x {‘!hﬂsgr'w""en

2. Ta(k@) = kTa(@)  — “LWWSMQ-LQ"

3T+ =TA@ + T4 = “addbve  properly”

Not all transformations from R™ to R™ are matrix transformations. For instance;

We m % +@ is wob o  wabux "nu.s‘gw«a‘WN
— Ny ol
W, @C’——- “non lvear v'-eMg"

However, a transformation 7' : R™ — R™ that satisfies both homogeneity and the additivity property is a
matrix transformation.

(More specifically, if these two properties are satisfied then 7" is called a linear transformation. That is, every
matrix transformation is a linear transformation, and every linear transformation is a matrix transformation.)

Example 2. Show that T(z,y) = (z + 3y, 2z, 2z — y) is a linear transformation.
b 2= (o, wa) Ve(vv), Tha:
T (&2) - T (ke kuw,) = (k“-+3‘w, Lkeas, | Lheu, - kuy )
(T, o ) + e o) K T().
T@+7) = T(aev,, upevy) - (u. w3 ), 2 () 2 (w0 e - (v ) )
. (u,+3u1,2u.,2u,-u1) + (vi+3w, 2v,, 2 -va)
T(R) + TR,

"

T Sa“‘”sc:zs L\ow\oaav\.u‘B andd  Hoe  addibve onfa/l‘;, Se T
2 it oo ldear storm(';m.



Math 251 Spring 2023

Theorem. If T4 : R* — R™ and Tg : R® — R™ are matrix transformations, and T'4(Z) = Tp(Z) for every
vector Z in R®, then A = B.

As a consequence of this theorem, each linear transformation from R™ to R™ corresponds to exactly one m xn
matrix, which we call the standard matrix for the transformation.

{ -2 4 -1
eq,. He standard wabrix s Bx. | s A“—[}g o - _“‘&'

The standard basis vectors for R™ are the n x 1 vectors

! o o
- ] - | - ©
e‘l - : ) Q,_'-: ' , , e_“: N
0 o L 1

Every vector in R™ can be written as a linear combination of the standard basis vectors:

a i
eq. in : ool +blif4c]|e]|= ae, +be, tce,

Example 3. Consider the linear transformation 7" : R> — R3 defined by

r([7]) - !] e Tlrgw)

Z2
z1 + 39
= (7(1‘7(?-; 27‘1“'"2, A« "';7(2).

Rp—— , ,,
T(m) wm} [ YK e o [3) ke T

2 +3(13)

(b) Find the image of each standard basis vector in R2,

| \ - 0O i [01) o - -1
° z D = = |2(e) #) < !
N ([ ]) ZI( ,,;Z)) T ’ T ( ' D +301) 3

(c) Find the standard matrix for this linear transformation.

SROIRCIE R
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Example 4. Suppose that T : R2 — R? is a linear transformation such that

()= e o (E)-1]

(a) Find the standard matrix for 7.

o wrile Z, and —e.; as  lwar combivalions op [—'.] and [‘:]

P N
o
-0 -
— b
~ e
" "
|}
= j\
®
- »pi-
]
'_ﬁ‘ -
Y~ N {
R.———-J +
N—-—/
- £ )-
—
£LY- PN
—
—‘ e
[ [}
l ' -
N~ o~ -
| W |
— —|
G
' —
~ ™
f\_—\ e
5L -
N -I
/_\
L) | |
c )
©3 ~—
— "
~N—-
! [}
ﬁ N —
e
\.RJ +
o) -
2\

(b) Sketch a diagram showing each standard basis vector in R2, and another showing the image of each
standard basis vector under the transformation 7.

L -
| "~ \ l- T(e'f), -
e"l ~“\/.
ﬁ ? 1 A

o}
)
Al
™~
Lol 2
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A linear transformation can be interpreted geometrically as a distortion of space that preserves straight lines.
(The origin should also remain unchanged!) Some simple examples of these transformations from R™ to R™
include reflections, (orthogonal) projections, and rotations.

Example 5. For each transformation 7' : R? — R?, sketch a diagram showing a typical vector Z and its image
T'(Z). Then describe the transformation and find the standard matrix for the transformation.

(@) T(z,y) = (=, y)
A (""j)

Xk

“5) (“)"5)
51. Ty =(9,%)

(b) T(z,y) =

® reC(echws e A-axig

T(l,o): (1,03 ) 'T‘(D,O‘—(o,—u)
A" i; —011.

mg‘___&‘:‘lv‘ e bl W=
T(!)o)=(0,v) ) T(O,u)': (I,O).

Al o]

& (DrHoSm') gl‘viec}lm« ov\LO oa-M?S

T(l,o): (0,9) , T‘(o,c):(d,l)_

pe (o 0]

Example 6. Describe each transformation T : R? — R? and find the standard matrix for the transformation.

(a) T(mayVZ) = (:U,O,Z)

+ or thogomal

o]
0

Az|o

Projecl-dow l o o]

m(‘o XE- Pl"W\L 0 o \

b) T@y.2) =@y, -2) .+ ollechbion

1y plane

-
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)
(S )



Math 251

Spring 2023

In R?, rotation about the origin by an angle 8 is a linear transformation. We can find the standard matrix for
this rotation by considering the image of the standard basis vectors.

3 ‘re(é'a\ = (ws@, S“\A@)

Pae (r;(l,o) =(cos9.sn« o)

e, . ‘T‘g (o, () z (—qw\ O, ces 9>.

COSQ -ane
e X Q'e -

l sin@  cos@
counherclodione  rolwhon

b ©.

Example 7. Suppose the linear transformation T : R? — R? represents a rotation of 45° about the origin.

(a) Find the standard matrix for the transformation.

cos L$° ~su s

L i & &
0 . @ &« |7 °37
@ g LS ®$45° A L i a
\C2 z 2 2
(b) Find the image of £ = (1, 4) under this transformation.
¢ -& |l g
Te(l &) = el T DN I e
e\" Re | 4 S s 54
& @ < |- *

%} - [
Tg(‘;z) }g.rc e ‘(]

\
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