Section 1.8: Introduction to Linear Transformations Objectives.

- Understand an $m \times n$ matrix as a transformation from \mathbb{R}^n to \mathbb{R}^m .
- Identity the standard basis vectors for \mathbb{R}^n and the standard matrix of a transformation.
- Study some simple linear transformations.

The set of all $n \times 1$ column vectors is denoted by \mathbb{R}^n . In this section, we interpret multiplication by an $m \times n$ matrix as a function (or <u>transformation</u>) from \mathbb{R}^n to \mathbb{R}^m .

Example 1. The set of linear equations

$$w_{1} = x_{1} - 2x_{2} + 4x_{3} - 2x_{4}$$
$$w_{2} = 3x_{1} + x_{2} - 2x_{3} + x_{4}$$
$$w_{3} = -6x_{1} + x_{3} - x_{4}$$

defines a linear transformation T_A from \mathbb{R}^4 to \mathbb{R}^3 .

(a) Express the transformation T_A using matrix multiplication.

(b) Find the image of the vector
$$\vec{x} = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \end{bmatrix}$$
 under the transformation T_A .

Note: The linear transformation in this example can also be written in comma-delimited form as

$$T(x_1, x_2, x_3, x_4) = (x_1 - 2x_2 + 4x_3 - 2x_4, 3x_1 + x_2 - 2x_3 + x_4, -6x_1 + x_3 - x_4)$$

Two simple matrix transformations are the zero transformation/operator and the identity transformation/operator.

Properties of matrix transformations. If $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation, \vec{u} and \vec{v} are vectors in \mathbb{R}^n , and k is a scalar, then:

- 1. $T_A(\vec{0}) = \vec{0}$
- 2. $T_A(k\vec{u}) = k T_A(\vec{u})$
- 3. $T_A(\vec{u} + \vec{v}) = T_A(\vec{u}) + T_A(\vec{v})$

Not all transformations from \mathbb{R}^n to \mathbb{R}^m are matrix transformations. For instance:

However, a transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ that satisfies both <u>homogeneity</u> and the <u>additivity property</u> is a matrix transformation.

(More specifically, if these two properties are satisfied then T is called a <u>linear transformation</u>. That is, every matrix transformation is a linear transformation, and every linear transformation is a matrix transformation.)

Example 2. Show that T(x, y) = (x + 3y, 2x, 2x - y) is a linear transformation.

Theorem. If $T_A : \mathbb{R}^n \to \mathbb{R}^m$ and $T_B : \mathbb{R}^n \to \mathbb{R}^m$ are matrix transformations, and $T_A(\vec{x}) = T_B(\vec{x})$ for every vector \vec{x} in \mathbb{R}^n , then A = B.

As a consequence of this theorem, each linear transformation from \mathbb{R}^n to \mathbb{R}^n corresponds to exactly one $m \times n$ matrix, which we call the <u>standard matrix</u> for the transformation.

The standard basis vectors for \mathbb{R}^n are the $n \times 1$ vectors

Every vector in \mathbb{R}^n can be written as a linear combination of the standard basis vectors:

Example 3. Consider the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by

$$T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}x_1 - x_2\\2x_1 + x_2\\x_1 + 3x_2\end{bmatrix}.$$

(a) Compute $T\left(\begin{bmatrix}2\\3\end{bmatrix}\right)$.

- (b) Find the image of each standard basis vector in \mathbb{R}^2 .
- (c) Find the standard matrix for this linear transformation.

Example 4. Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that

$$T\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}-1\\-2\end{bmatrix}$$
 and $T\left(\begin{bmatrix}2\\2\end{bmatrix}\right) = \begin{bmatrix}10\\0\end{bmatrix}$.

(a) Find the standard matrix for T.

(b) Sketch a diagram showing each standard basis vector in \mathbb{R}^2 , and another showing the <u>image</u> of each standard basis vector under the transformation T.

A linear transformation can be interpreted geometrically as a distortion of space that preserves straight lines. (The origin should also remain unchanged!) Some simple examples of these transformations from \mathbb{R}^n to \mathbb{R}^n include reflections, (orthogonal) projections, and rotations.

Example 5. For each transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$, sketch a diagram showing a typical vector \vec{x} and its image $T(\vec{x})$. Then describe the transformation and find the standard matrix for the transformation.

(a) T(x,y) = (x,-y)

(b) T(x,y) = (y,x)

(c) T(x,y) = (0,y)

Example 6. Describe each transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ and find the standard matrix for the transformation. (a) T(x, y, z) = (x, 0, z)

(b) T(x, y, z) = (x, y, -z)

In \mathbb{R}^2 , rotation about the origin by an angle θ is a linear transformation. We can find the standard matrix for this rotation by considering the image of the standard basis vectors.

Example 7. Suppose the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ represents a rotation of 45° about the origin.

(a) Find the standard matrix for the transformation.

(b) Find the image of $\vec{x} = (1, 4)$ under this transformation.