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Section 1.6: More on Linear Systems and Invertible Matrices

Objectives.

• Use an inverse matrix to solve a linear system.

• Understand properties of invertible matrices.

• Determine all vectors ~b for which the linear system A~x = ~b is consistent.

Theorem. A linear system has either no solutions, exactly one solution, or an infinite number of solutions.

Proof.

Theorem. If A is an invertible n× n matrix, and ~b is an n× 1 column vector, then the linear system A~x = ~b
has the unique solution ~x = A−1~b.

From the previous theorem, if A is invertible then the system A~x = ~b can be solved by multiplying by A−1.

Example 1. Solve the linear system.

6x1 + 2x2 + 3x3 = 4

3x1 + x2 + x3 = 0

10x1 + 3x2 + 4x3 = −1
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Sometimes we may want to solve several linear systems that have the same coefficient matrix A. For instance,
supose that we want to solve all of the systems:

If A is invertible, then the solutions can be found using matrix multiplication.

An alternate approach (which also works when A is singular!) is to solve the systems at the same time by
row-reducing the augmented matrix

Example 2. Solve the linear systems.

(a)
x1 − 3x2 + 4x3 = 5

x2 − 2x3 = −2

2x1 − 3x2 + 2x3 = 4

(b)
x1 − 3x2 + 4x3 = 1

x2 − 2x3 = 1

2x1 − 3x2 + 2x3 = −1
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Our definition of an inverse matrix B = A−1 requires that both AB = I and BA = I are true. However, it is
enough to know that at least one of these equations is true.

Theorem. Let A and B be a square matrices. If AB = I or BA = I, then B = A−1.

Example 3. Show that B = A−1 for the matrices A and B below. (These are the matrices from Example 1.)

A =

 6 2 3
3 1 1
10 3 4

 B =

−1 −1 1
2 6 −3
1 −2 0



Equivalence Theorem. If A is an n× n matrix, then the following statements are equivalent.

1. A is invertible.

2. A~x = ~0 has only the trivial solution.

3. The reduced row echelon form of A is In.

4. A can be written as a product of elementary matrices.

5. A~x = ~b is consistent for every n× 1 vector ~b.

6. A~x = ~b has exactly one solution for every n× 1 vector ~b.

Theorem. If A and B are square matrices and AB is invertible, then both A and B are invertible.

Proof.
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Problem. Given an m×n matrix A, find all m× 1 vectors ~b for which the linear system A~x = ~b is consistent.

If A is invertible, this problem is easy. (A~x = ~b is consistent for every m × 1 vector ~b.) Otherwise, row

operations can be used to determine which vectors ~b give consistent systems.

Example 4. What conditions must b1, b2, b3 satisfy for the system below to be consistent?

x1 − 3x2 + 4x3 = b1

x2 − 2x3 = b2

2x1 − 3x2 + 2x3 = b3
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