Section 1.6: More on Linear Systems and Invertible Matrices Objectives.

- Use an inverse matrix to solve a linear system.
- Understand properties of invertible matrices.
- Determine all vectors \vec{b} for which the linear system $A\vec{x} = \vec{b}$ is consistent.

Theorem. A linear system has either no solutions, exactly one solution, or an infinite number of solutions.

Proof.

Theorem. If A is an invertible $n \times n$ matrix, and \vec{b} is an $n \times 1$ column vector, then the linear system $A\vec{x} = \vec{b}$ has the unique solution $\vec{x} = A^{-1}\vec{b}$.

From the previous theorem, if A is invertible then the system $A\vec{x} = \vec{b}$ can be solved by multiplying by A^{-1} .

Example 1. Solve the linear system.

```
6x_1 + 2x_2 + 3x_3 = 4

3x_1 + x_2 + x_3 = 0

10x_1 + 3x_2 + 4x_3 = -1
```

Sometimes we may want to solve several linear systems that have the same coefficient matrix A. For instance, supose that we want to solve all of the systems:

If A is invertible, then the solutions can be found using matrix multiplication.

An alternate approach (which also works when A is singular!) is to solve the systems at the same time by row-reducing the augmented matrix

Example 2. Solve the linear systems.

(a)
$$\begin{array}{c} x_1 - 3x_2 + 4x_3 = 5 \\ x_2 - 2x_3 = -2 \\ 2x_1 - 3x_2 + 2x_3 = 4 \end{array}$$
 (b)
$$\begin{array}{c} x_1 - 3x_2 + 4x_3 = 1 \\ x_2 - 2x_3 = 1 \\ 2x_1 - 3x_2 + 2x_3 = -1 \end{array}$$

Our *definition* of an inverse matrix $B = A^{-1}$ requires that both AB = I and BA = I are true. However, it is enough to know that at least one of these equations is true.

Theorem. Let A and B be a square matrices. If AB = I or BA = I, then $B = A^{-1}$.

Example 3. Show that $B = A^{-1}$ for the matrices A and B below. (These are the matrices from Example 1.)

$$A = \begin{bmatrix} 6 & 2 & 3 \\ 3 & 1 & 1 \\ 10 & 3 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} -1 & -1 & 1 \\ 2 & 6 & -3 \\ 1 & -2 & 0 \end{bmatrix}$$

Equivalence Theorem. If A is an $n \times n$ matrix, then the following statements are equivalent.

- 1. A is invertible.
- 2. $A\vec{x} = \vec{0}$ has only the trivial solution.
- 3. The reduced row echelon form of A is I_n .
- 4. A can be written as a product of elementary matrices.
- 5. $A\vec{x} = \vec{b}$ is consistent for every $n \times 1$ vector \vec{b} .
- 6. $A\vec{x} = \vec{b}$ has exactly one solution for every $n \times 1$ vector \vec{b} .

Theorem. If A and B are square matrices and AB is invertible, then both A and B are invertible.

Proof.

Problem. Given an $m \times n$ matrix A, find all $m \times 1$ vectors \vec{b} for which the linear system $A\vec{x} = \vec{b}$ is consistent. If A is invertible, this problem is easy. $(A\vec{x} = \vec{b}$ is consistent for every $m \times 1$ vector \vec{b} .) Otherwise, row operations can be used to determine which vectors \vec{b} give consistent systems.

Example 4. What conditions must b_1, b_2, b_3 satisfy for the system below to be consistent?

$$x_1 - 3x_2 + 4x_3 = b_1$$
$$x_2 - 2x_3 = b_2$$
$$2x_1 - 3x_2 + 2x_3 = b_3$$