Section 1.4: Inverses; Algebraic Properties of Matrices Objectives.

- Learn the algebraic rules for matrix addition and multiplication.
- Understand zero matrices, identity matrices, and inverse matrices.
- Find the inverse of a 2×2 matrix.
- Use an inverse matrix to solve a linear system.
- Compute powers of matrices and matrix polynomials.

Many of the rules for matrix algebra will be familiar from previous mathematics classes.

Properties of matrix algebra. Lower case letters refe	r to scalars; upper case letters refer to matrices.
1. $A + B =$	6. $a(B \pm C) =$
2. $A + (B + C) =$	7. $(a \pm b)C =$
3. $A(BC) =$	
4. $A(B \pm C) =$	8. $a(bC) =$
5. $(A \pm B)C =$	9. $a(BC) =$

Notice however that matrix multiplication is <u>not</u> commutative. That is, $AB \neq BA$ in general.

Example 1. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$. Compute AB and BA.

The $m \times n$ matrix where every entry is 0 is a zero matrix and is denoted by $0_{m \times n}$.

Properties of zero matrices.		
1. $A \pm 0 =$	3. $0A =$	
2. $A - A =$	4. If $cA = 0$, then	

The last property listed above is called the <u>zero-product principle</u>. This is **not** true for matrix multiplication, as shown in the previous example.

It is also incorrect to 'cancel' factors in a matrix product.

Example 2. Let
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & -2 \\ 3 & 3 \end{bmatrix}$, and $C = \begin{bmatrix} 3 & 3 \\ -1 & -2 \end{bmatrix}$. Compute AB and AC .

A square matrix with 1 on the main diagonal and 0 everywhere else is called an <u>identity matrix</u>. This is denoted by either I or I_n (to specify the size of the matrix).

Properties of identity matrices. Let A be an $m \times n$ matrix.	
1. $AI_n =$	2. $I_m A =$

Example 3. Confirm the properties above for the matrix $A = \begin{bmatrix} 1 & -2 \\ -3 & 4 \\ 5 & -6 \end{bmatrix}$.

If A is a square matrix, and B is a square matrix such that AB = BA = I, then we call A an <u>invertible</u> matrix (or nonsingular matrix) and we call B an <u>inverse</u> of A.

Example 4. Show that $B = \begin{bmatrix} 5 & -3 \\ -3 & 2 \end{bmatrix}$ is an inverse of $A = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$.

If A does not have an inverse, then A is not invertible (or singular).

Example 5. Show that $A = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$ is a singular matrix.

Example 6. Show that if B and C are both inverses of A, then B = C.

The previous example shows that if A is invertible then its inverse is unique. We denote this inverse by A^{-1} .

Example 7. Show that if A and B are both invertible and have the same size, then $(AB)^{-1} = B^{-1}A^{-1}$.

The matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if $ad - bc \neq 0$, in which case

(The quantity ad - bc is called the <u>determinant</u> of A. We study determinants in Chapter 2.) **Example 8.** Decide whether each matrix is invertible, and find the inverse if possible.

(a)
$$A = \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}$$

(b)
$$B = \begin{bmatrix} 5 & 1 \\ 3 & 1 \end{bmatrix}$$

Recall that a linear system can be written in the form $A\vec{x} = \vec{b}$. If the coefficient matrix A is invertible, then the linear system can be solved by multiplying both sides of the matrix equation by A^{-1} .

Example 9. Solve the linear system.

$$5x + y = 2$$
$$3x + y = -2$$

A square matrix can be raised to any nonnegative integer power.

An invertible matrix can be raised to any integer power (positive or negative).

Powers of invertible matrices. Let A be invertible, n be an integer, and k be a nonzero scalar.

- 1. A^{-1} is invertible, and $(A^{-1})^{-1} =$
- 2. A^n is invertible, and $(A^n)^{-1} =$
- 3. kA is invertible, and $(kA)^{-1} =$

If $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ is a polynomial and A is a square matrix, then

Example 10. Let
$$A = \begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix}$$
 and let $p(x) = x^2 - x + 3$.

(a) Compute A^3 .

(b) Compute p(A).

Recall that the transpose of a matrix is found by swapping the rows and the columns of the matrix. **Example 11.** Show that if A is invertible, then A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.