Math 251 Spring 2023

Section 1.1: Introduction to Systems of Linear Equations

Objectives.
e Identify linear and nonlinear equations, and systems of linear equations.
e Understand terminology related to linear systems and matrices.
¢ Solve simple linear systems and interpret their solutions geometrically.

o Introduce elementary row operations.

A linear equation in the variables x3, X2, ..., X, is an equation of the form

R%y, + Ay - + Q. A, * b ) wLut '\«01 a" H«L Qa; are Zero,

A homogeneous linear equation in the variables xi, x2, ..., X is an equation of the form

AN+ Ry N, +- ‘\—&«a.\‘x,‘:O, whare an a" uq_ a; are  zero,

Example 1. Underline the linear equations. Circle the homogeneous linear equations.

x+4y =9 W+3X@FZ=3 —3x+2y—%z=0
x1—@:0 xatxntxst+x=1

not I o

A finite set of linear equations is called a system of linear equations (or linear system). The variables are called
the unknowns.

Ay + QK + -0 4 A, X = b,

AW G X b 4k = by

-
"

O Wy + RugXg + -0+ A K - bm
A solution of a linear system is an assignment of a number to each unknown so that each equation in the
linear system is true.

Example 2. Decide whether each set of numbers is a solution to the linear system below.

x+y+3z=0
2x+y—-z=5
(a) x=0,y=0,z=0 (b) x=5y=-52z=0 () x=1y=22z=-1
0+ 0+3(0)=0 § r(-5)r36)=0 | + 2 23(-0)=0
AN +O - O =0 #S 2s) +(-5)- 0= % 20y +2-(-N)=¥
f\v"a 30[“]-,\0“'!, L 'H’\NLS & 90(.4'-.‘0“!: H"fS S a joluk‘om-'!
1
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The set of solutions of a linear equation in x and y is a line in the xy-plane, so a solution of a linear system

in x and y corresponds to a point of intersection between lines.

Example 3. Solve each linear system, and interpret the solution(s) geometrically.

« add -2xeg! fo 212: 5;\
(a) x+y=1 = |
2 +y=4 7“5_ 1%*3"'
- '-5‘2 -;(,4-\3’-\
» S‘olvz Qr 'j: \
W= "L .
. sub. o QZ" ond e Lo 2 v
"L—z =| (g;-z)
- x =3, lwes  tnlerseed ot
(b) x=2%=3 Jd -2xegl o eg2: a anique pomt.
2x—4y =5 s z
y =
YUn 2*—&3_'5 - )

//‘)

p, &
'/,///f;-23=3

no So'zWLFOV\S

"

( the systo

2 lhwes are pamuef
(c) 3x+y=2 » add -3xegl b 912:
9x+3y =26

3 vy =2
60

;S thcowg) sle. }-)

%\
2

run o prawehr for oy

let 5=t, Thon  ZIx+t=2
So 7¢-=—;'E+-§-.
T solabion 5 x:-%-{,.;%’j, )

are. H.M_ sane

-HQ' ‘\'\«LS
(Cofv‘ Py a(zvv,’ )

I

ve
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The set of solutions of a linear equation in three variables is a plane, so a solution of a linear system in three
variables corresponds to a point of intersection between planes.

Example 4. Solve the linear system and interpret the solution(s) geometrically.

x+y—z=4 (l_[wsa Hm %,M‘L‘ou.s anre e‘puﬂlﬂl'iul‘, o  Haw Jr’am.

2X+2y—-22=8 ( 1A
Onne 8 s Ve & l" L4
Ax + b4y — 4z = 16 P e mme

parsnibee slz:  leb M oy= s zet = xe -s+ b4

Solabton 5 He plane  me-sebrl, yus, 2od.

More generally, a linear system is usually solved by performing elementary row operations on the augmented matrix

for the system.

Xx+y+2z=9 T i 2 q 2x+05—4z:—2 -'2, o -4 -2
2x+4y —3z=1 2 4 -3 1 Ox+05+222 o o i 2
3x+6y—52=0 3 6 -5 0 Ox + yile =1 o 1 o |
\FMM 5'139“4.«\ u%wu_v\"w& an‘;( \

Elementary row operations.
1. Multiply a row by a nonzero constant.
CS. yA o -4 -7 R' — _l_z | o -2 -1 , £
2Ky 2
° ' 7 > o o ! 2 —E
o ! o | o | o [ 3
)
2. Swap two rows.
S
eq. ( o -2 -l R, €8 (I o -2 - ‘g
o o | z > | o« o % 5
o | o ' o o \ 1 -
3
3. Add a multiple of one row to another row. G
- (] o
- o -2 -l g 3R 428 : 3
o | o | ————— | o | o |
© o | YA o © l 2
/
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Example 5. Solve the linear system and interpret the solution(s) geometrically.
x+y+22=9 L R, = -2R,
2x+4y —3z=1
3x+6y—5z=0 ( i 2 Q
au%vw.ul-w( wl-nx (4] \ -7, -\
o o i 3
b 2 9
2 4 -3
3 6 -5 0 L@—*R,—ZQ;
{ ! 0 3
—
| &~ =,-1¢, Lol
| | 2 19 o o | 3
0 2 =7 -7
-5 o
S 6 l 0, —e, +%R,
l ﬁs"’fzs 3£| { | o 3
© | o 2
| \ 2 q o o | 2
o 2 -1 -7
o 3 -l -27
l K\ —_ 2"’21
l '27_ — Jipz | o] O |
o ( 0 2
T R S o o L3
o t % %
o 3 -l -%
TLI- S’o,u\."‘l’% ¢
— -
S’ﬂz Ry ~3R, x=\, 47, 2:%
o029
o | -7 - The  Hee planes wherseck

a-‘ HN_ POM}' (“'L'Z).
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Section 1.2: Gaussian Elimination

Objectives.
o Identify matrices in row echelon form and reduced row echelon form.
e Use an augmented matrix in reduced row echelon form to write the solution for a linear system.
e Apply Gauss-Jordan elimination and Gaussian elimination to solve a linear system.

e Understand the relationship between numbers of unknowns, equations, and free variables.

A matrix is in row echelon form when the following are true.

(a) If a row contains a nonzero number, then the first nonzero number in the row is a 1. (This is a leading 1.)
(b) Any rows that contain only zeroes are at the bottom of the matrix.

(c) If a row has a leading 1, then it is further to the right than the leading 1 in any higher row.

A matrix is in reduced row echelon form if it is in row echelon form and:

(d) If a column contains a leading 1, then every other number in the column is 0.

Example 1. Which of the matrices below are in row echelon form (ref)? Which are in reduced row echelon
form (rref)? Which are neither? 1y to

R T LR R A

r. e.-o. neitler r.e. "'p‘ nes Hher nes e

g{«.o“bl‘”—i

140 -3 1 -4 0 5 1&41 1300 2
001 2 0 1 0 2 001 2 00000
000 0 0 0 10 010 3 f"'“"C00114
C.C. e.c. \‘.Q.Q. ncl‘u-{r Miu,“"-
12 4 08 1000 5 10 200 7
10 -5 2 3 0100 0 01 1 00 2
00 0 1 4 0010 12 00 0 1 0 -3
00 0 00 000 1 —4 00 0 01 1
nect r.r.el. . cref
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A variable corresponding to the leading 1 in some row is a leading variable. All other variables are free variables.

Example 2. Each augmented matrix below is in reduced row echelon form, and corresponds to a linear system

in the variables x, y, and z. Find a solution for each linear system, identify the leading variables and the free
variables, and describe the solution geometrically.

o 0 0 i leaol.'Wi vars: x,u, 2 (tee vars: nome
a 0o@do 2
/V;@ 3] Solubon x=1 '?5:2’ 72=3 .

TLrs v He Forw‘- (',2,3).

Le“' 2=t < assign o pamvw."er ~ %L\ p«. Vo,

() FCODQ —03] lendongy oS 7, e vorst 2
0 00 O
d

2 + 4t = -3 = 2 =-4t-3
Pree .
\/o.riab\e Lg+2€ = O = 3 = ~2t
'nw, So(u“c'Ov\ iC ¢ < "4'&'3, 5:—2(’, ?t‘é.
Tl\t‘s S a l"_i:_\_'- i 'HM‘ - g‘(‘ms“m ’ fFac .
1 000
(c) 0130

lea,/ﬂ‘ vars: XA, p‘ep. vars! Z
ncongshant 7405"‘0-4!” " 3

Ox » 0'3 y0z=1. gbvl-uv\ has :;_So(uh\ou ‘
A
\QDAM‘; f
1)—1 -1 0 lead vars: % ree vars ‘oY, 2
(d) 00 0 0 K J
0 0 0 0

f 1\ Le"— 5: S, £—=t
frea vortables T x-s-t=o0 so x=s + t.
T solt o 3= 5 tt, 9=, 2= ¢t.

Thes 3o|'1; X a plam. in  Hee - Avensions
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Given an augmented matrix, an algorithm called Gaussian elimination can be used to find a matrix in row
echelon form that has the same solutions.

Gaussian elimination.

1. Identify the leftmost column that contains a nonzero number.

2. If necessary, swap two rows so that the first number in this column is nonzero. Call this number a.

3. Multiply the top row by % to create a leading 1.

4. Add multiples of the top row to each lower row so that every entry below the leading 1 is zero.

5. Cover the top row and repeat from Step 1.

Example 3. Apply Gaussian elimination to the augmented matrix below.

3
Vn,ui&i 0 -2 0 7 12 ‘l/“z”'zpl
lop. 4 -10 6 12 28
“"MP4—56—5—1 P2 -5 3 6 4]
o o | o -7/2 -6
LR&-—)R; o o S o -7 -4 |
2 -0 6 2 28 l R;— R;-3R,
0 -2 2 1 Vo -5 3 6 4
2 -5 6 -5 -1 o o | o U -6
o0 o o %4 1]
{
-4—-
ko= 7k | 2 =20,
\ -5 3 6 14 { 1 -9 3 6 14
o 7 17 0 o { o & -6

-5 6 -5 -1 o O 0 o &l 2

—
W\a'l’rik s i fow edreon Qm

-5 3 6 4

-2 . = 17 leaolmﬂ Vars. ave 7(“ 7(3’ X

S o - -
17 -24 Q\a. vars.,  ove AU, K
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While Gaussian elimination will result in a matrix in row echelon form, Gauss-Jordan elimination is an extension
that gives a matrix in reduced row echelon form.

Gauss-Jordan elimination.

1. Perform Gaussian elimination to obtain a matrix in row echelon form.
2. Starting from the bottom row and working upwards, identify the leading 1 in each row (if there is one).

3. Add multiples of this row to each higher row so that each entry above the leading 1 is a zero.

Example 4. Solve the linear system.
X1+ 3x0 — 2x3 + 2x5 =0 =
2x1 + 6x0 — Bx3 — 2x4 + 4x5 — 3x5 = —1 ; é ’7“ : 2z o ©°
5x3 +10x; -+ 15x5 = 5 e 6 . © Z ;
2x1 + 6x0 + 8xg +4x5 + 18x = 6 o 6 o o : o o
ausmko( mabrix L 25 — _\é Rz
i 3 -2 o 2 o e 0 ; -7 o 2 o O—T
2 oe st 4 -3 - o o | rd o 3 |
0 (o] g {0 (o] IS— ; o o o o S ( y
Ry~ R,-28, L R, R, - 3R,
Rq"?ﬂq—'lk'
1 -1 o -]
; g .2 © - © ol © i { rA ZO [~ o
° -t -2 o -3 - © o ° o o | .
O o ¥ o o 1S § . o 6 & o 3
°© o 4 g8 o 18 6 ©
| &= - | &= Roeze
-2 o 2 o o ( 3 o 4 2 =4 o
i 3 o o | .1 o O o
0 o { 2 o K4 ! \
o 0 o o o | -
o ] S o o 5y s 0 © ° o o o 3
© ¢ 4 3% o 13 6 °
| &2 28, P
‘ ; _z o z o o 7(| = “3(‘-45‘ - Z{
°© o { 2 o 3 |
Waq = —LS
© o o o o o o 3 '
© o o o o ¢ 2 4 e = 3.
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A linear system is homogeneous if each of the equations in the system is homogeneous.

Ay %, + Qi Ay + --- + QA An,, = O
i-e. .

aw“7(| + Ay, Xy + - + A .. = O

A homogeneous linear system in the variables xq, x2, ..., x, always has the trivial solution
X1=x = -=x,=0.

(Any solution where at least one variable is nonzero is called a nontrivial solution.)

Example 5. Solve the linear system. Hint: compare this system with the previous example.

X1+ 3x0 — 2x3 + 2xs =0
2x1 + 6x0 —5x3 —2x4 + 4x5 —3x5 =0
5x3 4+ 10xa 4+ 15x =0

2x13 + 6x2 +8x4 +4x5+ 18x5 = 0

5, xpot.

Lk %<7, =,
—ﬂw_.,\!

Ay = =3¢-4s-2¢
7(-3: "25

ts
(g

Xg = O

rober P resetzo) Ha

Qg N~

O oW

A}

Quyn

NQgrO

Fa o T ol ]

AR

©o0o0o0 €~£L4 o9 0 g)

~

<

8 \% o %'
‘s—‘-r-

3 . %7

5.2
e

R

oo0oGQC
OO0 0 Ww
QON‘C\

A

o
)
(2]

©O—o0 o

e Solubon s (olor 999, 0)'
crel [on. Excé. »
Yriveal So‘-’? .

Theorem. A homogeneous linear system with n unknowns and r nonzero rows in the reduced row echelon
form of the augmented matrix has n — r free variables.

Theorem. A homogeneous linear system with more unknowns that equations has infinitely many solutions.
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An alternative to Gauss-Jordan elimination is to use Gaussian elimination followed by back-substitution.

Gaussian elimination with back-substitution.

4. Replace each free variable with a parameter.

1. Perform Gaussian elimination to obtain a matrix in row echelon form.
2. Write an equation for each leading variable in terms of the other variables.

3. Starting from the bottom, substitute each equation into the equations above it.

Example 6. Use back-substitution to solve the linear system in Example 4.

Fr‘mvt Ex. 4.
—_— x, =
Wy + 322 ~ Loy 4-7.,(r o =
Ky =
7‘-3 +2Xq +;7(‘ = ' 7(—: -
LT ’/3
7(' = ’37(1 “’27(.-5 - Z?‘-y T[q_
'13: l"zxq—ng 2,
I
x, = A %
- Xy
Wy 2 =Zmg H 2oy~ LA
] xl‘
Ay = | —qu-S(—g) = ~2uy | A
|
We = 3 X

- Ba, + 2(- 2‘&,) -2xg
3%, -Gy -2ne

solu"t'op\ TS
-3e-bLgs -2¢
c

- 2s

(LI} Y

1

"

"
o & 0n

Discussion. For each augmented matrix below, identify the number of solutions for the corresponding linear

system.
1 26 0 =15 1 26 0 -15
010 -5 O 010 -5 0
001 3 8 001 3 8
000 O 0 0 00 1 2

Q"l’& \/onra‘aun ) Ao pm VM‘A'V(('
S’tS;L’w\ ) comfslé-\" Covm‘slo\" S'Gas['um

=) Mﬂ%‘l‘( s@luh\q,\‘ =) one solubion .

6

0
-5

0.1 B
0

2% 2P o=

) solu\,h\ov\s

C‘v\(ev\l: YL« ” 5‘68 LM)

o O =
|
=
o1

o
OO0~ N
o= O
= oo o
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Section 1.3: Matrices and Matrix Operations

Objectives.

e Recognize a rectangular array of numbers as a matrix.

Understand basic terminology and notation used for matrices.

Apply the operations of matrix addition, subtraction, and multiplication correctly.

Compute a linear combination of matrices.

Find the transpose and the trace of a matrix.

An m x n matrix is a rectangular array of numbers with m rows and n columns. A square matrix of order n is

a matrix with n rows and n columns. - ”
o Acaafwll

. | %3 2 o /b

2z : . .
R : is a X4 ml’fu(, c is a

Hove -wd-n‘x ep

order Z.

A matrix with one row is called a row vector (or row matrix). A matrix with one column is called a column vector
(or column matrix).

row Ve&lar'- [‘ 1 3 4] Coluww\ W.OL('-

e

Two matrices are equal if they have the same size and their corresponding entries are equal. If two matrices
have the same size, then their sum (or difference) is found by adding (or subtracting) corresponding entries.
A matrix can be multiplied by a scalar by multiplying each entry by the scalar.

Example 1. Simplify each expression.

3 0 -2 4] [2 1 -1 3] N
(a) 1 -1 1 —-1/+[0 3 2 1|= {2 3 o
4 2 6 0] 1 -5 3 2] s -3 q 2
7 3 0 217 [4 0 -1 1] 32 3 ( '
(b) 5 -1 24l |—0 1 2 2|=|@s _, o #%|-|
—2 2 2 -4/ [1 -5 8 O -7 = ¢ -4 v

)
o‘f@u‘ngn?}l"
2
{¢) 2|1 -1 O0|= |2 -2 o . i 2 t o |
-3 2 4 -6 4 3 M_Lt [g 4] "‘[o l o:(

s ded i



Math 251 Spring 2023

If Ais an m x r matrix and B is an r x n matrix, then the product AB is an m x n matrix. The entry in the
ith row and jth column of AB is found by multiplying each entry in the ith row of A by the corresponding
entry in the jth column of B and adding the results.

: . § §H colamn
A g ][l o by e by
o | : i bzl sz o baa
—> | Qi Ry - Qg . X (AB); = aj1byj + ainbgj + - -+ + airby;
LOmi Qg amr_] Lbﬂ brj T b"‘\

bey
Example 2. Compute each product below (if possible).

— 4 -1 -1 < c
@ [203]{22:?;]_[‘1 7 7-]
(M(3) + D+ (DO =-2 D + @ + (VE)= &

le.
(7.')(3) ¥ (OX‘Z)A' ) = 4 ('0(&) + (o) (2) + (3)(3) = V7 ¢

3 4 -1
12 -1
(b) -2 2 5 = undelined.
51 E]E 3
ngml'n‘x 3x3m¥ﬁx

N f
dinnansions o ...".‘_L watkch

P

0O

S

w - |
O N B
=~
Y
o =
N
w

_
|

) 1
WY
QN -
w - L
}
LN
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A matrix can be partitioned into submatrices by selecting certain rows and/or columns.

an 3125 ais A
a1 axn| as| = "
21 22 7%
a1 a3 ( 933 A,
<&
an o a] |
a1 ap as| = |0,
a31 asx a3 T";
ajy v app | a
11} 312 | @13 o
ay | ax |axs| = C, <

{
asy | asz | as3

An.
ﬁu

ouefa w], A,

QN = [a‘sl an] s Au : [a33]

]

-
uL..re = [G“ Ay Qg

ek,

Qun

- -

Ca wLut c, | % , e‘-c.
a-“

Partitioning matrices into rows and columns allows some different strategies for matrix muitiplication. This is
particularly useful when only some rows and/or columns of the product are needed.

AB=Alb; by
a
a
AB=|"?| B=
an

Example 3. Simplify each expression.
-1

12 -1
@ 553l
2 0 3 3
Compare
1 27
0 -3

COMPAV'G

r
[a—y
N

—_

|
N
= O

b= AT, A5, - n’ﬂ,]
.

a,®
2.8

SR L]+ (4]

w-‘HA

lql' oo’uww\ ,p e, Z(a).

‘[“0 ' 1] +2[‘L { o -3—3:[% 2\ -4]'
witle

224 o J e 200,
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If A, Ay, ..., A, are matrices of the same size, and ¢y, ¢, ..., €, are scalars, then

ClA, + C1A1 + o +C“A“

is a linear combination of Aj, Ap, ..., Ap.

When B is a column vector, the product AB is a linear combination of the columns of A.

Example 4. Simplify.

2 1 1] |x 27‘—*«3+E
Seslly |3t
- .‘.8(34.5'2
] l \ Y 4 Vi { |
S ER R | R I ER R e

The last example suggests that we can express a linear system using matrix multiplication rather than an
augmented matrix.

e linear system:

2x+ y+ z=5
—3x + 4y =2
—x+8y+5z=0

¢ augmented matrix:

e matrix equation: /
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If Ais an m X n matrix, then the transpose AT is the n X m matrix is obtained by swapping the rows and
columns of A.

Example 5. Find the transpose of each matrix.

2 2 3 13 6
(a)A:[—SIG] (c)C=[01—2}
« [2 -¢ 00 1 - , o ©
A=la cC ={3 v °
6 -1\
3 6
1
3 34 0
(b) B=|g (d)D:P 5 2}
7 02 -1 [z 4 o
g'r‘-[! 3 S ‘l] D ™q ¢ 2
c 2 -1

noke 'D‘r-‘—'D, s D7 Sejw\mjrﬁc
i

Properties of transposes.

L (A = A 3 (k)= kAT

2. (AxB)T= AT +g" 4. (AB)T = f’[51'%\1— / sl Hab He opler
( i s S’wn?pca[!“-

The trace of a square matrix A, denoted by tr(A), is the sum of the entries on the main diagonal. (The trace
is undefined for matrices that are not square.)

Example 6. Find the trace (if possible) of each matrix in the previous example.

{',( A MPL {r K are uw\D(prvup( , LQCRIU;{_ A a-\o& fg ore

V:__l_' Sgnare amabrices.

(D= 1414123 (D) 35D = 7
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Section 1.4: Inverses; Algebraic Properties of Matrices
Objectives.
e Learn the algebraic rules for matrix addition and multiplication.
e Understand zero matrices, identity matrices, and inverse matrices.
e Find the inverse of a 2 x 2 matrix.
e Use an inverse matrix to solve a linear system.

Compute powers of matrices and matrix polynomials.

Many of the rules for matrix algebra will be familiar from previous mathematics classes.

Properties of matrix algebra. Lower case letters refer to scalars; upper case letters refer to matrices.

1. A+B= B+A 6. a(B£C)= aB *C

2.A+(B+C)=(A+‘B)+C 7 @ib)C= oC t bC
3. ABC)= (A®)C
CAB:C) = ARt AC
5. (4£B)C= AC:BC 0. aB0) = (aB) C = B(aC)

otC) = (ab) C

Notice however that matrix multiplication is not commutative. That is, AB # BA in general.

Example 1. Let A= E ﬂ and B = E :ﬂ Compute AB and BA.

P R R

N "
] F ral -
| o,

U
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The m x n matrix where every entry is 0 is a zero matrix and is denoted by 0., xx.

_ |l o o o
eq . O’-"3'[o o o] , O|:4=[o ®© o o]

Properties of zero matrices. cealar  wmalmx
¥ v
1L A+0= A 3.04= O
2. A—A:O 4. If cA =0, then e;u/.u c=QO eor A=O_

The last property listed above is called the zero-product principle. This is not true for matrix multiplication,
as shown in the previous example

I R R T Py Y

It is also incorrect to cancel factors in a matrix product.

11 3

pe= [V 5 312 t] Thas BB =AC,
nc=[} .'}[f. fz}[;‘ f] but BEC.

A square matrix with 1 on the main diagonal and 0 everywhere else is called an identity matrix. This is denoted
by either I or I,, (to specify the size of the matrix).

=07, - lzgl]ek

Example 2. Let A — [1 1}, B= [‘31 ‘2], and C = [ 31 _32] Compute AB and AC.

Properties of identity matrices. Let A be an m X n matrix.

L A= f) 2. InA= A

Example 3. Confirm the properties above for the matrix A =

1 -2
-3 4.
5 —6

D
._\
n

b2 r o v .2
. A l:o ‘]: =3 4 = A

§ =6

rqloo U 4 ) 2
- o 1 0 -3 4 -3 4]214,
o o | s—"-b .

A
T
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If A is a square matrix, and B is a square matrix such that AB = BA = I, then we call A an invertible matrix
(or nonsingular matrix) and we call B an inverse of A.

Example 4. Show that B = [_53 _23] is an inverse of A = [g g]

w3 395 20=[0 7]
e [5205 5 )0 T

-1
AR=T and BAI 5o B4

If A does not have an inverse, then A is not invertible (or singular).

0 aty e b]
] is a singular matrix. 6:/\299 : A =l e A) .

Example 5. Show that A — B 0

S [+ 21[2 3] - 16 51

Thug: o +0c = *\\ conbradichou !
"4

lb + od = b=o

2a + Oc =0 =

We hae Lud o cddvdichon, so A has o wverse.

Example 6. Show that if B and C are both inverses of A, then B = C.

’gcs GSSMP‘%-’\, AB=T and CA =T, TLQ,,’-
B=1%:=(cA)B:-c(A®) =cT=C,
The previous example shows that if A is invertible then its inverse is unique. We denote this inverse by A~1.

o 22 :[53] G s

Example 7. Show that if A and B are both invertible and have the same size, then (AB)™! = B71A~1.

(A)( 'A) = A(BeNA" = A147" - 447" - T
(w4")(45) = B'(4"4)% - 8"'T® = B'g = T.
'TLWLS A-B S iVWQf‘!‘IL‘L’ gv\('/( @(‘By' z 'B-'A-'_

W

T

1

I,

"
Q
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The matrix A = [z Z] is invertible if and only if ad — be 5 0, in which case

A A S [
ad-be | -¢ @
(The quantity ad — bc is called the determinant of A. We study determinants in Chapter 2.)

Example 8. Decide whether each matrix is invertible, and find the inverse if possible.

@a=[5 T @)= (O-(DED < 6-6 =0
A s et iwverhble. (h. A is smsuhr)

(2]

=<

—

g 5
GIOEROIOE s’r3<=zj.}

1

) =3 1] ek (5)

Ak BZO, so B has

. A
Qn, e "

% 1 i -|] 5 -k
= ) > | s s
8 2 S > 2

Recall that a linear system can be written in the form A% = b. If the coefficient matrix A is invertible, then
the linear system can be solved by multiplying both sides of the matrix equation by A™1.

Example 9. Solve the linear system. i’

Sr+y =2
dr+y=-2

£ A?Z’=_Q,Hu\

N HEE )

= A-'-E

; -
2 - AT

o] "

1
s =
 —
1"
Wy
—

1
e 1
\t‘n P\
\

YA pY-

1"
1
N
L-_.—_—-J
M~
~
R
»
~
s
1
A\l
.Y
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A square matrix can be raised to any nonnegative integer power.

A°= T, A'= A A= AA, A= AAA

An invertible matrix can be raised to any integer power (positive or negative).
?‘

(A"

Powers of invertible matrices. Let A be invertible, n be an integer, and k be a nonzero scalar.

1. A~V is invertible, and (A1)~ = A
2. A™ is invertible, and (A™)~! = (A"

3. kA is invertible, and (k4) 1= L' A7 = ‘_k A

If p(z) = ap + a1 + agx® + -+ + a,z™ is a polynomial and A is a square matrix, then
- 2z
P(A)- aoI +a‘A +a1A b oeue +a,\A“
2 0 9
Example 10. Let A= 41 and let p(z) = z° —z + 3.

(a) Compute A%,
3 1 o 72 © 2 o -
=[]

(b) Compute p(A).

p(A\=A1’A*3I=[“: T]Z ]"3[ ] 3 3]

Recall that the transpose of a matrix is found by swapping the rows and the columns of the matrix.

Example 11. Show that if A is invertible, then AT is invertible and (A7)~} = (A~1)T.
(AT (AAY s 1T T
(ANTAT: (AT - 1T
Todoe, (AT = (A7

12

~
Y
H



Math 251 Spring 2023

Section 1.5: Elementary Matrices and a Method for Finding A~!
Objectives.
e Write each elementary row operation using matrix multiplication.
e Find the inverse of a given row operation.

e Use row operations to find the inverse of a matrix or show that the matrix is not invertible.

Recall the three elementary row operations:
- mlhpls onL  (ow 53 a  conshant

- 9wap bwe  rows

- add o Mu“‘c‘pla. op ote MOW "0 a*”“"(.( fow,

Two matrices A and B are row equivalent if A can be transformed into B using elementary row operations.

e} | o tL o o
& . 4 o o a‘,\A o 1 o are  row %u?valen‘“ .
o o ( e o |

Ged RO, Hee R—%LEL
An elementary matrix is a matrix that can be obtained from an identity matrix using a single elementary row
operation. Multiplication by an elementary matrix is the same as performing an elementary row operation.

Example 1. What elementary row operation is equivalent to calculating EB for each matrix £ below?

4 olou.ul row'Z
£ B.

1
(a) E= |0

o N O
= o O

(c) E= < SW“" ow | ol rou3

o
o= OO

0
0
0
1

OO = O
OO O

R,— 2R, R, >0,

1 00 1 0 0] « Mu“‘c‘.olj tows | "5 I
() E=|-3 1 0|& add -2 Lo d) E= [0 1
0 01 00 1

Pwl fo row 2

R, R,-3R Ri— R,

\y
|1 ° e | ] \
-3 ' o 2 = -1
eﬂ o 0 1 3 | 3 !
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Each elementary row operation can be reversed by applying another elementary row operation.

@, t o RL—-)RN‘SI;!. I o R, — R-5R, e o
o | s ’ o |

Example 2. Find an elementary 3 x 3 matrix that corresponds to each row operation, and find an elementary
row operation that reverses each row operation.

e[em% M“ﬁ‘x

(a) multiply row 3 by —% invese  rouwy o(xmhou\

. \ o o
1
© 0 =% le. M“‘if’ls 53 “ca‘[:mm'-
(b) swap row 1 and row 2
o o
t o o R.«R
\ 2
-2, z\ & K‘L o o 1 '
ie. Swap fowsg a.aa,h., 1
(c) add 4 times row 2 to row 1
t L ©

e t.° Ry— R, - 4R,

Q.
subbret 4R, Powm R,

. R =R +6R,

Equivalence Theorem. If A is an n X n matrix, then the following statements are equivalent.

1. A is invertible.

-y
2. A% =0 has only the trivial solution. 4 m(e A ;? =0 “l‘ﬂ“jg has 'I'LL
0 A & Mverkl)lz' Han
'2:.‘3 VS Hv. e:l_!j golu"‘loh

3. The reduced row echelon form of A is I,.

4. A can be written as a product of elementary matrices.
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The Equivalence Theorem says that if A is invertible then there is a sequence of elementary row operations
that reduces A to I,,. The same sequence of row operations applied to I, results in the matrix A~1.

1. Form the matrix [A|l,].

2. Apply elementary row operations to reduce 4 to I,,.

3. The resulting matrix has the form [I,|A7}].

Inverting a matrix. To find the inverse of an n x n matrix A:

Example 3. Find the inverse of A = {

. S'"ar"

[EE Ny
O Ot o

with [A l I]_‘

| Z 3 1 o p

72 5 3 o ¢ o

t o] b1 0 o 1
2."‘»--)23‘"2\

| 2 3 i o

o -3 -% t o

Ry — Ry +2R,
{ 2 3 | °
(] | -3 -1 {
0 o] -'l -S 2
l 2-5 - - 23
{ 1 3 { o
| °3 -7 |

oo W W
| R

L Rl_’ R;“'gz}

R‘ = R‘ -323

{ 7
(»] \ (o]
o o {

-14
13
s

6
-S

-2

l R, — R, -2R,

{ [ o
o | o
o o l

oo Dok [TIAT]

(n*utpore, :

—40

A= (8

-40

[
s

l6
s
-1

b
-5
-1

q
-3

3
-3

-

q
-3
=1
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The algorithm for finding an inverse matrix can also be used to decide whether a matrix has an inverse.

11 -3
Example 4. Determine whether A= |2 3 4 | is invertible and find the inverse if possible.
3 5 11
t + -3 t © o
2 3 | o I e
3 s ylo o
R.L—-} KL'ZQ‘
zs-a Q.S..gg' A w-& S le' .‘V\VOJ‘LiUQ,
t -3 { o ©O
z ! lo -2 t o LQCOW\SC we CAN\OI’ reduce A-
2 20| .x o #I|
J‘O :E'S MS‘AS @[CMMMI'W\A
J/ R-s"a Rs"zﬂ‘l
g 198 ogj‘a,l‘iowg.

Example 5. Decide whether each homogeneous linear system has nontrivial solutions.

21 + 279 + 373 = 0 B T A n, o
(@) o 4 Bus 4+ 355 = 0 1§ 3 x2 \|=/ o
1 o g X3 °

T +8x3 =0

’W.q, cmwru’em" W"ﬁ')& N .‘nvefl-.uv. (Ex. ’s’\ , e H—Q
ﬁasltw» hag t'f_'_l_!g "'L( {-n\iq‘al S’a{u“‘m«.

(b) T1+x9—3x3=0 | | -3 X, .
221+ 3xy + 423 =0 7 3 g Ay - o
31 + 529 + 11z =0 T S 2, o

/IL Cpblp.‘ct‘eml' w"ﬁ' B vx’g_"' ivwefl‘tu’. (E)f ‘(), o H»u*e

ane MAMV'\Q' Sb’u,HOUW .

4
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Section 1.6: More on Linear Systems and Invertible Matrices
Objectives.

e Use an inverse matrix to solve a linear system.

e Understand properties of invertible matrices.

e Determine all vectors b for which the linear system AZ = b is consistent.

Theorem. A linear system has either no solutions, exactly one solution, or an infinite number of solutions.
- - 2.7
Proof. S:App"i', %€, and X, are o(.‘g'-mc" $o{u41'0v\s op A ;Z = b,
- — 7‘-0{ -
Le"(— Xo = %7‘_;?7—' 'ﬂN.v\ %}K; M ul#xl AISO
- -» = -
Ax. = AR %) = A% -A%, = b5-b = 0.
I0 ke s any  scalar, Hon -
-3 -7 -2 -
A(i’.+kx03=A§.+kA57-,=b+k'0=b+ .
’n\u:l’ is, ;Zu * k;zo S a soln Dp A;l.’:—g ar any le.
’rln.r Q,n’ ‘H\;S S‘l‘!'.uo\. L\AS W\QM: wAmap soluHO“S’

Theorem. If A is an invertible n x n matrux and bisannx1 column vector, then the linear system A% = b
has the unique solution & = A~15.

- -5
o= b

From the previous theorem, if A is invertible then the system AZ = b can be solved by multiplying by A1,
Example 1. Solve the linear system.

6x1 + 2x9 +3x3 =4 6 2 3] 4
3x1+ o+ 23=0 _;> 4 1 f K = (o}
o 3

10z + 3z9 + 423 = —1 { 4 -t
6 71 3 . -1 -1 3
’ﬂ,.,’ el Se Oc A; 3 ( L'( Y3 A < 2 L -3
o 3 I -1 e
T[/u L7 o ' 4 -
5 2 | = | 2 6 -% o| = | 1t
R (I o -1 4
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Sometimes we may want to solve several linear systems that have the same coefficient matrix A. For instance,
supose that we want to solve all of the systems:

.ﬁ
—-’ —_7 _ —,
x = b, A'x. 'bz , , A ;2‘ = bk

If A is invertible, then the solutions can be found using matrix multiplication.

$7, =A%,

- -1
R :Ab, R AE

An alternate approach (which also works when A is singular!) is to solve the systems at the same time by
row-reducing the augmented matrix

AR A e A E A EA AR EN |

Example 2. Solve the linear systems.

1 — 322 +4x3 =95 1 —3x2+4x3 =1

b
(a) To — 2x3 = —2 ( ) T2 —2x3=1
221 — 310+ 223 =4 2x1 — 39 + 223 = —1
V-3 4 s '
— +
0 t -1 -1 0 Ql zl 321

]
W
L~

v

Qo

-3 4 3 [
-2 (-2 |
o 0 -6

-1 +28, x, = -2+2¢.

?bs’Lw\ oS ;‘nco“;rslm‘y 3o
H—(ﬂ, oe o Splul‘t‘oy\"

Pulr- (b):
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Our definition of an inverse matrix B = A~ requires that both AB = I and BA = I are true. However, it is
enough to know that at least one of these equations is true.

Theorem. Let A and B be a square matrices. If AB =1 or BA=1, then B = AL

Example 3. Show that B = A~! for the matrices A and B below. (These are the matrices from Example 1.)

6 2 3 -1 -1 1
A=13 11 B=|2 6 =3
10 3 4 1 -2 0

Fow Mo Tho abwe, we only wmed b shaw AB=T (o0 B4-T).

6 2 3 S PSS B | o o
AR=1] 3 « 1 1 6 -3|=lo v o|=T
o 3 y 1 -2 o o o \

—m«rche s - A"' (o.(so, A=TF"

Equivalence Theorem. If A is an n x n matrix, then the following statements are equivalent.

1. A is invertible.

2. A% = 0 has only the trivial solution.

Qows Sect. 15 (P‘%‘ z)

3. The reduced row echelon form of A is I,,.

4. A can be written as a product of elementary matrices. J

5. AZ = b is consistent for every n X 1 vector b.

. . new  condibions.
6. AT = b has exactly one solution for every n x 1 vector b.

Theorem. If A and B are square matrices and AB is invertible, then both A and B are invertible.
Proof. Suppose Xo is a st do BX=0, The

(AR % = A(8%) = Ao=3.
Beeruse AB 1 werkble, He syshun  (AB)Z =8 s only He el
Solubton . Thus %oz 0. Tal
%lul-v)ov\, 10 T o .‘mverkUL.

'Ei = B’ has oiB e -‘-Nbv‘d‘

’

\ s
Thas A= A(EB—) - (AB)R'  is imwerkble.
produck off  wverkole  wabries s wwerkble .




Math 251 Spring 2023

Problem. Given an m x n matrix A, find all m x 1 vectors b for which the linear system AT = b is consistent

If A is invertible, this problem is easy. (AZ = b is consistent for every m x 1 vector b.) Otherwise, row
operations can be used to determine which vectors I;give consistent systems.

Example 4. What conditions must by, ba, b3 satisfy for the system below to be consistent?

Tr1 — 31’2 + 4283 = b1
To — 2333 = b2
2z1 — 3z + 223 = b3

A

b;“ Z,L' - glﬂl =O) So bs = 25! +gbg_.
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Section 1.7: Diagonal, Triangular, and Symmetric Matrices

Objectives.

o ldentify diagonal, upper triangular, lower triangular, and symmetric matrices.

e Understand properties of diagonal, triangular, and symmetric matrices.

Some matrices are easier to compute with than others, either because they contain a lot of zeroes or because
or their symmetry. These matrices will be important in some of the topics we study later in this course.

A square matrix A is:

° o
e diagonal if the only nonzero entries are on the main diagonal. )\;]
¢ o

i.e. Ay =0 £ i.’fj

e upper triangular if every entry below the main diagonal is zero.
-C oy o
ie. Qi =0 L7y 0 o

e lower triangular if every entry above the main diagonal is zero.

o o
i.e. Qi =0 .'Q i<y m

e symmetric if A = AT,

i.e. a':j ®= QA

N
Example 1. Identify each matrix as diagonal and /or upper triangular and/or lower triangular and /or symmetric.
2 0 0 0 4 1 00 2 2 4 1 00
0 -5 0 30 0 6 0 01 1 010
4 00 -3 8 3 0 0 —1
d&‘aaom‘ 9' I
A‘ %WML“«C lower 4 wpper 4 None o ““-Sc
upper 2, ( - )]
| s, Wo! &Lwc .
Sywan
1 40 -3 1 2 3 4 2 000 0 00O
011 2 2 3 41 0 000 0 00O
000 4 3 41 2 0030 0 00O
0 00 1 4 1 2 3 0 00 3 0 00O
upper 4 g‘d‘”mrc 30M|‘ d‘h‘ﬁom"
wepwr 8, u‘opf A )
lower 8, lower & y
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An n x n diagonal matrix can be written in the form
Cd, @ o
o dy -+ ©

. ¢ o --. d-\

This matrix is invertible if and only if every entry on the main diagonal is nonzero, in which case the inverse is

s ) s o @
%, °
-t o 44 - °
1
D: : SN . R rovidedl  nowme op He d; valnes
' Yy s zero,
L °© o . 4-'\ !
Example 2. Compute each inverse (if it exists!).
2 0 0] 5 ° e 10 0] '
@loio =]e 3 e (b) [0 1 0 =_DNE!"'
0 01 o © | 0 0

If k is a positive integer, then D* can be computed by raising each (nonzero) entry in D to the power k.

Example 3. Simplify each expression (if possible!).

" = o s - .

2 0 0° [2°,5, ® gy 10 0]° | o o

00 1 o 0 o @ 0 0 0 °© 0 o

200" [= o o 10 0]7" o
® 030 =7 g o (d |01 0] = TDNE-

0 0 1) 6 o 1 0 0@ "

~ cavw\o" Q.\.\al ']7 ) So
. 4

Multiplication by a diagonal matrix is also relatively simple. we alse C“"‘""l' p"’\’( D .
Example 4. Compute each product.

-3 0 0] 1 1 -3 -3 mm”‘dp‘tg R, by -3
(@ [0 2 0| |0 5= o 1o ie. 1ol 2, b T

0 0 1) |3 4 3 4 Maml Tl T U9 :

b
4 -1 2][100] T4 -4 & malbigy 2y by
b) |8 1 1| (0 4 of= . .
®) 2 1 i] 002} H L{ ;.] e malliply - C, oy !
u C,/L bg L(
) " Cy by 2
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Properties of (upper) triangular matrices. Note: similar properties hold for lower triangular matrices.

1. The transpose of an upper triangular matrix is lower triangular.
2. The product of two upper triangular matrices is upper triangular.

3. An upper triangular matrix is invertible if and only if every entry on the main diagonal is nonzero.

4. The inverse of an invertible upper triangular matrix is upper triangular.

1 3 -1 3 -2 2
Example 5. Supposethat A= |0 2 4 |andB= |0 0 -1
00 5 0 0 1
13 %
(a) Show that A~t = [0 2 —%
1
0 0 =
(3 -1 I % % I & o " v -k 7’5’
g i 2 o 5 'y; z Y ! o ' So A - e ji ’2/5'
o o \ 0 L
% : © s ).

vo3 [z -2
A'@ = o 1 4 o ©0 -l
© s

0

L
o

[} ]

= Yo o _;(le T
BA [ :

0 o | L o ©
Proof of 2. S‘uﬂoost A,B are  wpper -‘n‘o-naulorl anol ’e} C-= A‘g .
e L7y, Hen

Cy

+--- 4 a;nb

a-l'dblj + aizsz “j

A b‘i LR e (A1) I°(f.—~)j + aiabij oo 4 a,;,\b,\j

W\J

Ry 20, -, Ry = O bij =0, - bu®
= @.
—ELCG.M% ch =0 whin i75 ) 3 H‘\L wsal'n‘x C ) weper "‘ﬁanadar
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A %Mlﬁc & A= AT

Properties of symmetric matrices. If A and B are symmetric n X n matrices, and £ is a scalar, then:

1. AT is symmetric.

2. A+ B and A — B are both symmetric.

3. kA is symmetric

4. AB is symmetric if and only if AB = BA.
5. If A is invertible then A~! is symmetric.

6. If Ais invertible, then AAT and AT A are invertible.

Proof of 2.

(A« E)@ P A Byt A e Bos (AE)
tow \'/' Cp‘J O'p A*‘E
The next example illustrates property 4 above.

Example 6. Compute each product.

1 2][-4 1 -2 1 2][-4 3 7 AR 0 55“““"“'“’
(2) [2 3] {1 0]: s 1 () [2 3] [3 —1}2 t 3 s>
L AB=BA.
-4 1i (1 2| -% =S -4 3 1 2
o [ 8- Sl P e
1 )
One final observation is that for any matrix A, the products AAT and AT A are both symmetric.

(AA:)‘r: (AT}TAT : AAT L se AT Supamnebric

SWot': order wlum u.sihs “"‘hnfpos(,!!!

2 0
31

’ o -\ 25 s 3
- [0 3 1 [T A
3 o - 35 3 7
TA: % (—S Z = 3
4 [-\ 3 ZS ' S_S 7 '|3°

Example 7. Let A = [ —31] . Confirm that both AAT and AT A are symmetric.

w
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Section 1.8: Introduction to Linear Transformations

Objectives.

e Understand an m x n matrix as a transformation from R™ to R™,

e Identity the standard basis vectors for R™ and the standard matrix of a transformation.

e Study some simple linear transformations.

The set of all n x 1 column vectors is denoted by R™. In this section, we interpret multiplication by an m x n

matrix as a function (or transformation) from R" to R™.
= ANg

¢—r w|
x”, X2
WS X |
domain = IR ' 2
Example 1. The set of linear equations codomain = |R

wy = x1— 219+ 413 — 224
wyg= 31+ z2—2234+ 24

wg = —6x1 + x3— T4
defines a linear transformation T4 from R* to R3.

(a) Express the transformation T4 using matrix multiplication.

of -
—v) €
= w - 3 | - 1
TA ( ® 2 1 \ « vJLl-fl A n
Wa - 6 o} \ -1 3
Xy
1
(b) Find the image of the vector Z = _21 under the transformation T'4.
0
{
T ) |- ¢ -7 ’ )
-1 B -
2 - = 2
0 I Y o

wundor

Note: The linear transformation in this example can also be written in comma-delimited form as

T(x1, 22,23, 1:4) = (CL‘1 — 2x9 + dx3 — 224,31 + T3 — 223 + x4, —621 + T3 — $4).

W, Wl

p—

-
x
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Two simple matrix transformations are the zero transformation/operator and the identity transformation/operator.

-

’ro(;z)’02=o T]’_(;Z)=I;Z=7—Z
\\ZCU'O h‘umsﬁ»rmhov\“ ‘\{o(mh'j “V‘N\S‘:rm‘\'m !

Properties of matrix transformations. If T4 : R™ — R™ is a matrix transformation, ¥ and ¥ are vectors in
R"™, and k is a scalar, then:

1. TA(6)=6 4 ‘HM_ Zer0 vec'-or/oﬂ‘gt"\ s “ML”%“‘ L3 a M*ﬁ‘x {‘!hﬂsgr'w""en

2. Ta(k@) = kTa(@)  — “LWWSMQ-LQ"

3T+ =TA@ + T4 = “addbve  properly”

Not all transformations from R™ to R™ are matrix transformations. For instance;

We m % +@ is wob o  wabux "nu.s‘gw«a‘WN
— Ny ol
W, @C’——- “non lvear v'-eMg"

However, a transformation 7' : R™ — R™ that satisfies both homogeneity and the additivity property is a
matrix transformation.

(More specifically, if these two properties are satisfied then 7" is called a linear transformation. That is, every
matrix transformation is a linear transformation, and every linear transformation is a matrix transformation.)

Example 2. Show that T(z,y) = (z + 3y, 2z, 2z — y) is a linear transformation.
b 2= (o, wa) Ve(vv), Tha:
T (&2) - T (ke kuw,) = (k“-+3‘w, Lkeas, | Lheu, - kuy )
(T, o ) + e o) K T().
T@+7) = T(aev,, upevy) - (u. w3 ), 2 () 2 (w0 e - (v ) )
. (u,+3u1,2u.,2u,-u1) + (vi+3w, 2v,, 2 -va)
T(R) + TR,

"

T Sa“‘”sc:zs L\ow\oaav\.u‘B andd  Hoe  addibve onfa/l‘;, Se T
2 it oo ldear storm(';m.
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Theorem. If T4 : R* — R™ and Tg : R® — R™ are matrix transformations, and T'4(Z) = Tp(Z) for every
vector Z in R®, then A = B.

As a consequence of this theorem, each linear transformation from R™ to R™ corresponds to exactly one m xn
matrix, which we call the standard matrix for the transformation.

{ -2 4 -1
eq,. He standard wabrix s Bx. | s A“—[}g o - _“‘&'

The standard basis vectors for R™ are the n x 1 vectors

! o o
- ] - | - ©
e‘l - : ) Q,_'-: ' , , e_“: N
0 o L 1

Every vector in R™ can be written as a linear combination of the standard basis vectors:

a i
eq. in : ool +blif4c]|e]|= ae, +be, tce,

Example 3. Consider the linear transformation 7" : R> — R3 defined by

r([7]) - !] e Tlrgw)

Z2
z1 + 39
= (7(1‘7(?-; 27‘1“'"2, A« "';7(2).

Rp—— , ,,
T(m) wm} [ YK e o [3) ke T

2 +3(13)

(b) Find the image of each standard basis vector in R2,

| \ - 0O i [01) o - -1
° z D = = |2(e) #) < !
N ([ ]) ZI( ,,;Z)) T ’ T ( ' D +301) 3

(c) Find the standard matrix for this linear transformation.

SROIRCIE R
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Example 4. Suppose that T : R2 — R? is a linear transformation such that

()= e o (E)-1]

(a) Find the standard matrix for 7.

o wrile Z, and —e.; as  lwar combivalions op [—'.] and [‘:]

P N
o
-0 -
— b
~ e
" "
|}
= j\
®
- »pi-
]
'_ﬁ‘ -
Y~ N {
R.———-J +
N—-—/
- £ )-
—
£LY- PN
—
—‘ e
[ [}
l ' -
N~ o~ -
| W |
— —|
G
' —
~ ™
f\_—\ e
5L -
N -I
/_\
L) | |
c )
©3 ~—
— "
~N—-
! [}
ﬁ N —
e
\.RJ +
o) -
2\

(b) Sketch a diagram showing each standard basis vector in R2, and another showing the image of each
standard basis vector under the transformation 7.

L -
| "~ \ l- T(e'f), -
e"l ~“\/.
ﬁ ? 1 A

o}
)
Al
™~
Lol 2
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A linear transformation can be interpreted geometrically as a distortion of space that preserves straight lines.
(The origin should also remain unchanged!) Some simple examples of these transformations from R™ to R™
include reflections, (orthogonal) projections, and rotations.

Example 5. For each transformation 7' : R? — R?, sketch a diagram showing a typical vector Z and its image
T'(Z). Then describe the transformation and find the standard matrix for the transformation.

(@) T(z,y) = (=, y)
A (""j)

Xk

“5) (“)"5)
51. Ty =(9,%)

(b) T(z,y) =

® reC(echws e A-axig

T(l,o): (1,03 ) 'T‘(D,O‘—(o,—u)
A" i; —011.

mg‘___&‘:‘lv‘ e bl W=
T(!)o)=(0,v) ) T(O,u)': (I,O).

Al o]

& (DrHoSm') gl‘viec}lm« ov\LO oa-M?S

T(l,o): (0,9) , T‘(o,c):(d,l)_

pe (o 0]

Example 6. Describe each transformation T : R? — R? and find the standard matrix for the transformation.

(a) T(mayVZ) = (:U,O,Z)

+ or thogomal

o]
0

Az|o

Projecl-dow l o o]

m(‘o XE- Pl"W\L 0 o \

b) T@y.2) =@y, -2) .+ ollechbion

1y plane

-

||
)
(S )
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In R?, rotation about the origin by an angle 8 is a linear transformation. We can find the standard matrix for
this rotation by considering the image of the standard basis vectors.

3 ‘re(é'a\ = (ws@, S“\A@)

Pae (r;(l,o) =(cos9.sn« o)

e, . ‘T‘g (o, () z (—qw\ O, ces 9>.

COSQ -ane
e X Q'e -

l sin@  cos@
counherclodione  rolwhon

b ©.

Example 7. Suppose the linear transformation T : R? — R? represents a rotation of 45° about the origin.

(a) Find the standard matrix for the transformation.

cos L$° ~su s

L i & &
0 . @ &« |7 °37
@ g LS ®$45° A L i a
\C2 z 2 2
(b) Find the image of £ = (1, 4) under this transformation.
¢ -& |l g
Te(l &) = el T DN I e
e\" Re | 4 S s 54
& @ < |- *

%} - [
Tg(‘;z) }g.rc e ‘(]

\
!

-7.12 f
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Section 2.1: Determinants by Cofactor Expansion
Objectives.
¢ Understand how to find minors and cofactors.
e Use minors and cofactors to compute the determinant of a square matrix.

e Find the determinant of a 3 x 3 matrix efficiently.

Recall that the determinant of A = is det (A) = ad — be.

solabon M([}{D aoL be o« |0 |zed-be

We will use this to inductively/ recurs:vely define determinants for larger square matrices.

If A= [a;;] is a square matrix, then

e the minor of a;; is Ha d.LLtrmrnanl' o‘—\ H{ Mqh.n ol)luwal Q‘W« A
mij b«:s o‘a(e('n—xs oo L and Co‘uw\v\ J

e the cofactor of a;; is Cj . (")i +3 M
——— 13
C..

!
2

-1 4

1 3 5.

-1 8 2
v

(a) Find the minor of a11 and the cofactor of ai1.

M, = M([g zD 6-40> -3¢, Co (M = (0 (31)

- - 34,

m——

=

Example 1. Let A=

(b) Find the minor of a3 and the cofactor of ags.

M, = l oo PR TR Cp * M, = @ (15)

-1 8 —_—
= - |S.

om——
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Cofactor Expansion.
If Ais an n x n matrix, then the determinant of A is
- Ha
dok (A) = Ay CL\ + aizcu +o 4 G, Cin

e Xpansion alo.\S i fow
- : ... . C Ha
dﬂ.«"' (A\ = a|.3 Cli + a"j Cz:) ¥ + a'\“ Cl\J e,KPaV\sTM alo"s J CJ‘-‘IWV\ 3
Example 2. Write out the cofactor expansion of A = [Z Z] along the first column.

A.d’ (A\ = aucu * auCz' = ad + C('b) = &A’Lc.

AN
&)L G A g

r o~ 4
1 3 0O
Example 3. Find the determinant of the matrix B= |2 -2 3|.
4 5 2
-2 3 2 3 1 -2
M(B):l 92’—3qzlz+0«;
- (o - 6X) - 3 (G- ()W) + o((z)(s)-(—o(c.))
: "4—3(—5’) "o =$-+’ . ;‘_é’ﬂ(o‘-’ of zers!!!
2 =110 |4
Example 4. Find the determinant of the matrix C = ? (1) : g 23
-1 1\0/3
o 1 -3 el -1 1 -4 . -1 4
dqa"(A>‘:O | © -0 ) o 2| +%|o 1 -3 -ble 1 -3
L -t 3 -1 3 { o 1

T
Y]
/""_-"'\
Y
\
woN
————
]
Q
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Theorem. The determinant of an upper triangular matrix, a lower triangular matrix, or a diagonal matrix is
the product of the diagonal entries.

ai; a2 @13 G4

Example 5. Show that the theorem above holds for A = 0 a2z a2 o .
0 0O as3 a3
0

0 0 au

° L& cpg\-ac/‘or' enpomg o atlwa co’uww\ |.

L (A) ) Gz ng az“
do = a4, g Azs xq| -~ +0 - p
o Quq
- A3 &
= Ay \Qy h -0 4.0‘)
O agq

T Ry Az Ry R,
e

Finding determinants can be very time-consuming, especially for large matrices. There is an efficient method
for computing the determinant of a 3 x 3 matrix (without using cofactor expansion) that is similar to how we

compute the determinant of a 2 x 2 matrix.

: ad-be.

~ rad

b 1 3 0

Example 6. Find the determinant of B= |2 -2 3|.
4 5 2

~0 ~IS-IZ L) 136 40

dot (B) = [-4 +36 4o | +[—o - ,;_‘z-S
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Example 7. Find all values of X for which the determinant of A = [)‘1_1 )\i2] is 0.
OQOJ'(A}: (/,\H)(’)\-Z)—& = 7\& “AN-2-4 = N A-6 = (';\4,23(«)‘,3).
T[\u-s A&L(A) =0 :p A=-2 o A=S.

So ... what is a determinant?

In some sense, the determinant of a square matrix A is a scaling factor for the linear transformation T'4. For
instance, if A is a 2 x 2 matrix, then (the absolute value of) det A is the area of the parallelogram obtained
by applying 1’4 to the unit square.

. . 1 0 -1 1 11
Example 8. Consider the matrices A = [0 2], B = [ 5 ‘3], and C = [2 2].

(a) Find det A, det B, and det C.
Lt (D=7 | At (B)= - S , dek ()= 0.

(b) Sketch the image of the unit square under the transformations T4, T'g, and 1.

4

21, —‘gfa/m:!.

TA / _g. > \Tc,
I
3

4
ha
A Ts Y 4
2 =7 . st i ~ alea = 0
afe 2 4 ’f(.
TE) I’ ,.,
t1 'r(e'b
i TEY)
A\l o er(%h 5 IE] l( bx
T(€) =3 o

(c) Compare the determinants in part (a) with each image in part (b).
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Section 2.2: Evaluating Determinants by Row Reduction
Objectives.
e Understand how elementary row operations affect determinants.
e Use row reduction to compute determinants.

e Introduce column operations and apply them to compute determinants.

The “cofactor expansion” method for finding determinants leads to some useful observations.
Theorem. Let A be a square matrix. If A has a row (or column) of zeros, then det A = 0.
o) t 2 3| &e— nofabion waesns “deberminant”
e - au’[os‘x =0 oo ol =0
’ Y s

Theorem. Let A be a square matrix. Then det A = det AT .

wl\ﬁf CDQOCLW exXpawnsTon Wm\ H~. iu\ o °p A ) H’* St
as copac‘-or s He iH" coluum aQ lq—r-

Theorem. Let A be a square matrix.

(a) If B is obtained by multiplying a row (or column) of A by a scalar k, then det B = k det A.

ka" ka ka
& '3 au q\?_ a\?

Q Qv Raq Oy = k| 4y an ay

Az A3y gy a3y A3z @3

(b) i B is obtained by swapping two rows (or columns) of A, then det B = — det A.

ab- b a
Q- c d|l T T4 e

(c) If B is obtained by adding a multiple of one row of A to another (or a multiple of one column of A to
another), then det B = det A.

ay + ka;, agq+ l’-azz

e3- -
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Theorem. Let E be an n x n elementary matrix.

(a) If E is obtained by multiplying a row of I, by a scalar k, then det E = k.
(b) If E is obtained by swapping two rows of I,, then det £ = —1. ~

(c) If E is obtained by adding a multiple of one row of I, to another, then det E = 1.

¥

e i\ o o o o t o 4
w((p) s w((isig)n, wizi o)

Theorem. Let A be a square matrix. If two rows (or two columns) of A are proportional, then det A = 0.

SN { K9
a,. JL" {'«.z}) =0 i Aot ‘% 3 —3] = O
C7.=ZC|

Example 1. Find each determinant.

1 0 0 O I o o ©
0020 _ |0 | oo
@ g 1007 s 0 2 0o =2
000 1 0o o o |
>
R, 2R3
{rvoeanlar
10 -4 0 [ o -4 o (& UPPT TRl
11 0 06|_|o 1 & o | be: R“"'Z-*"ﬂ\g.
(b) 00 1 0= - \ o - —g. foﬂ‘(ﬂ\“ 3
00 0 =3 0 0o o -3
RZ‘_»RZ'RI
3 0
-5 0
-2 0 — O' be_c.au.gg, CS’ ';ZC\
5 1
0 0




Math 251 Spring 2023

Example 2. Use row reduction to compute -each determinant.

0 1 5 T -6 9 + swap K, and R
@3 6= - | o 5 N : by, -1
2 6 1 2 6 | malbiply by ~
B P \huﬁwwoﬁgw*’?‘*
o oelermaanb.
{t -2 3
= -3 | o 1§ Ry — Ky ~IR, - o
© 10 -% D 1Y P T wol cl/w—-%&"!"
T A ~ ‘
T -3 o [ £y —? 123—'(0‘22
6 o -s§

\ Ad'u'wd\f\qn" O(pgg w_g_}' OL\M%,'”,

= (65,
-1 4 2 6 -l & L 6 .
0017 _fo o 7 R —R3-R,
~1 2 4 14 o -2 2 8
0 2 4 6 o 2 & 6
o 0 - > Cos)ﬂc‘or' eKPav\Gl‘m\ 0(0»3 co‘umv\ ].
: (- -2 1 g .
S
D ﬁz"'7ﬁz+23
(o] “‘ T
== o 6 lu
A 6 ) Copn(‘of expantion d(og columin ,
{ 7
R N BT
= -7 (M—Qz)
: S6.
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We can also use column operations to simplify determinant calculations.

Example 3. Find the determinant of each matrix.

1 -1 0 2 I -1 e 2 { o o o -
-2 7 0 -4 -2 1 ° 4 | _ |7 5§ o o
@A=1, 3 3 t -3 s 7 -2 3 o
2 6 -5 3 2 6 -5 3 2 g -5 -
Cq (- 2€, = ()G
= - 15
35 —2 6 5 5 -t 6 R =R, -3R,
ot 2 -1 1 _ S Y
(b)B_ 24 1 5 M('B)’ 'l l‘ ' s ﬂs-")Q-s—ZQ-,_
37 5 3 1 7 ¢ 3 Ro = Ry - 38,
o -1 { 3
g | 1 -1 ]
° o 3 3 ?6‘(-9( .
[ g o ” ekfmc“"‘!!'
-1 t 3
- - ) 33

( 8 o ﬂ},—>ﬁ3+2.

L
W W

)
3
o Q l 2 Co‘lc(-er NNM!![
expn

T
1

)
\

~
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Determinants and Solutions of Linear Systems.

In Sections 1.5 and 1.6, we learned about the “Equivalance Theorem”, which gives several conditions that-are
equivalent to a linear system having a unique solution. We can now add a condition involving determinants.

~
Equivalence Theorem. If A is an n X n matrix, then the following statements are equivalent.
1. Ais invertible.
1
2. AZ = 0 has only the trivial solution.
Cecbvon 1-5
3. The reduced row echelon form of A is I,,.
4. A can be written as a product of elementary matrices. J
5. A% = b is consistent for every n x 1 vector b. a
Cee o o
6. AT = Ehas exactly one solution for every n x 1 vector b.
7. det A #£0 ‘S Cebion 23,
Example 4. Which of the following matrices is invertible?
1 0 -2 1 5 1 0 1 -1 1 0 1 N
A=13 4 1 B=1|01 6 C=|-11 -1 D=8 1 -5
00 0 0 0 2 0 0 1 2 0 2
btA=0 so dotBio 0 B  dbC {0, s D =0 (=20
I ) z )
. taverkible : '
A— ™ ot nverhole s dwverkble C 5 tnverk . 2 DN ,:g_l-
- 21 S’wo.‘, ﬂ, Mlzl) Swverk bl !
1 1 1 0 1 0 1 5 1 2 3 4
1 -1 -1 1 -1 0 4 1 4 3 2 1
F_2000 G—0062 H_5555
2 1 0 0 2 0 -3 1 0 0 01
Caun malte {'rl‘ausu(ar' bg dn;" k=0 23 =I5, "’21,

SWQ.O .o\‘v\s fowg

Job F
= F

£0
aver Hele .

(colowman of  20505)

—'—') Q s __V\L’_‘
(‘mw,rl—-‘bl{.

= H o »_\_o_l' mverkible
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Section 2.3: Properties of Determinants; Cramer’s Rule
Objectives.
e Understand how determinants interact with matrix operations.
e Introduce the adjoint of a square matrix.

o Apply Cramer's Rule to solve a linear system.

We have several methods for finding the determinant of a matrix. We now want to find ways to deal with
determinants of expressions such as k4, A + B, AB, and AL

If Aisan n x n matrix, and k is a scalar, then det (kA) = k™ det A.

Example 1. Confirm the property above for the matrix A = [g Z] and the scalar %.

dot (km) = Ad( ” :ﬂ) = (ka)(kd) - (kb)(kd)

= k’(ao('bc> = 0(11["4

If A and B are square matrices of the same size, then det (AB) = (det A)(det B). I

Example 2. Confirm the property above for the matrices A = [Z _21] and B = [_3 > }

db A= -G-8 , bk T=é-5 = (’MA)OMB) y

AE:[: —S[—? —;z]: :::Z ;ZT , ALL(Aﬂ:—uz-(—lzo)

1
. . . . -1y
If Ais an invertible matrix, then det (A7) = Tt A
Example 3. Suppose that A is invertible. Use det (AB) = (det A)(det B) to prove that det (A~!) = 3 1A'
e

.T-P A (B MWL‘HQ/ H*W\ A-' QM'S"‘S auol
dot T = ek (AA7Y 2 (b (Lt AT) | 5o 1=t A)(dRHAY).

{

Therelore, b (A7) > 247 .
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For most pairs of matrices, the determinant of the sum is not_the sum of the determinants.
—— 3

Ssa—

In general, det (A + B) # det A + det B.

Example 4. Confirm the property above for the matrices A = [2 1] _ 5 ]

dkhA=9, MbB=I ALLA+A,,L@//;{
I
A+'B‘—[;.’ g] et (,4 +B) = _CZ/O//W"' Q{}M“

The one situation where the sum of two determinants is useful is when two matrices are almost identical.

Theorem. Let A, B, and C be square matrices that differ only in row 7, and suppose that the ith row of C
is the sum of the ith row of A and the ith row of B. Then det C = det A + det B.

w[,ua'z wou,f-or MPMM.!!! D @Q_g‘of e;cp.a(ows ow L.
et s Sl s
JQ;" c = ¢q Cé( + Cc;ciz ook Con Cl-"‘ = (a.;, +b,;|\ Cq +(a;1é&f-b;;> 4 ;(_ 3

= a“C,;, + .- +a;,.C.;,\ ¥ b;‘ C" + - + b;_“c‘j,‘ = a(l,""A 3 dp'-’»B )
e —"

0 1 3 0 1
Example 5. Confirm this theorem for the matrices A= |0 2 2 |, B= 0 2 2|,andC = |0 2 2].
4 0 —1 0 2 1 4 2 0
i
T
OQL{.A-_ 0 T 1 =1, ﬂl:z(—s—a\ = - 14
4 ~1
3 o 1 2 z| - 3(2-4) = -6
det B = o = 2| = 3|1t 3( )
o 7 |\
I o | 3 o0 |
dt C = © z | =]e 2 2 |=12 K '\:z(-e_q):—ZO_
& 2 o & o -2 & -z
T
ﬂs‘qes"ﬂz

‘T[\,u.s dek-C = Aok A +ditS.

2
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v

The (classical) adjoint of a square matrix A is formed by transposing the matrix of cofactors.

Math 251

Cu Cﬂ. o Cia T- i Cu Cet --- Cvu
a-dj A - Czl C‘Z?. T th = C'z sz T Cru.
Ca Cuz '3”le1"‘ L, Cia C’lu - Gaw
Example 6. Find the adjointof A= |0 2 2|.
3 1 0
, 7z 1 12| © 2
= -\ - - .

o -0 ‘ °\ . Cm’(") 3 0 :-(—6):@ Cop==-6
ot = &l oo momr 5 -8 Cr s O
Cy = © Cir = -6 G; = 6

-2 b -6 T -2 { o
adj A= 1 -3 o z 6 -3 -6
0o -6 6 -6 © £ 1.

A useful application of the adjoint matrix is finding an inverse.

1
Theorem. If A is an invertible matrix, then A™! = adjA.
det A

-Cl’ow Ex. 6" 30 z ! © -6 @ @
LS AN AN SR I
3 (o -6 0 6 o o -6

Example 7. Find the inverse of the matrix A in the previous example.

K4 1) 3 i )
o(b{‘A" o 2 ¢ x|l o 2 2 = -6
2 | © o o -

-1 ] o

)

A,!
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Cramer's Rule. If A is an 7 x n matrix such that det A # 0, then the system AZ = b has the unique solution

_det Ay _ det A _ det A,
17 et A 2T et A S n = et A
where A; is obtained by replacing column j of A with the vector b.
Example 8. Use Cramer’s Rule to solve the linear system:
1 +2x3 =26
—3x1 + 4x9 + 623 = 30
- -
— 21— 29 + 3z3 =8 /Ci’_%zcl
! o 2 ( o 2 ' o o
A=]-3 4 ¢ det A= |-3 ¢ o|=|-3 « 12
-1 -7 3 ’ -t -2 3 -l -1 s
N 12
= \ _— =20—(-2Q>=&C|_
6 o 2 £ o 7
A|= 00 {4 6 : dd.A': 70 6| = = 40
3 -1 3| g -2 3
(1 6 2] "6 1
N.:|-3 30 e | ok A |3 30 6= =
-1 4 3 -1 g 3
i i
{ o 6 T - B 4
= | -3 = | % 4 30 = --- = |52
ﬂz 4L 30 ; dL(" AB -1 -2 8
-1z 8
Te (ube D = det 4. 4o _ o
Solntion { { m = ‘l‘( = T
xl - —0_(2«" A( - 72' - -'_Z.
det A @4 T

dot As 152 4

~
w
1
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Section 3.1: Vectors in 2-space, 3-space, and n-space
Objectives.
¢ Introduce the some terminology and notation for vectors.
e Understand vector operations in R™ geometrically and algebraically.

e Study some properties of vector operations.

A (geometric) vector is a quantity with a direction and a length, often represented by an arrow.

-y
<
STED = >

Ml— Al not ciwll”' equa
( @m«" |em5u~s) ("lmf!ﬂi'difechms) (dﬁ%m.l' owlqh‘ms)

Two vectors can be added (geometrically) by placing the vectors end-to-end. (This is referred to as either the
“triangle rule” or the “parallelogram rule”.)

vl

IM’L" l? *’3 v H«L

 dugoeal of a
» pmlk(oﬁmm wi Ha
34-7 ?IJ‘-’Z 3 anol \’l’

Multiplying a vector by a scalar changes (“scales”) the Iength of the vector without changing the direction.
If one vector is a scalar multiple of another, then we say the vectors are parallel. (Multiplying by a negative
scalar reverses the orientation, but the result is still parallel to the original vector.)

=1
A
LA T . . N - . L
30 = UZI 3 ' ’”:'2“ M’Li He zero vecer
7 we al gl | O i gl k-
é___z_-;—— l aJQrﬂ VGC"O'"
T LA

We can view subtraction of a vector as “adding the negative of the vector”.

- -
-V v
- i
XN 2w
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IfIP = (a1, 0a2,...,a,) and Q = (b1, b9,. .. ,bn)‘ are two points in R”, then the vector from P to Q is

l.v\l'L\'Q‘ P.ru" %‘u.l Pmm""
—_
PQ = (bl-a|,b2"a;,"', by\"an).
Two vectors @ = (u1,u2,...,u) and ¥ = (vy,vs,

..,Un) are equal if their components are equal. That is:
-

=
W=V & W=V, amd w2V, and o amd wua =,

Example 1. Find the vector 4 = 1@ that has initial point P = (3, —1) and terminal point Q = (-2, 8).

QR

; j=15§=(-z—;,8—(—'))=ﬂ
F

Example 2. Find the initial point of a vector w that has terminal point @ = (4,7,2) and is parallel to
v = (—2,1,3) but has the opposite orientation.

ie. chooe w=kV whe k<o.

P
N - ”:(-,',’5)_
\\ 1 P=(&+(-“3,;7H,z+§)=(2,8,s),

Q= (“-7'Z)

Arithmetic with vectors (addition, subtraction, scalar multiplication) is done componentwise. If @ = (uy,us, . . ., up)
and ¥ = (v1,v2,...,v,) are vectors in R™ and k is a scalar, then we define:
- -
w v = (M‘ 1—V“ M1+\/1, - Wi *’Vn)
kw =
wn

(ku, y kug o ku,\)

("M" 'M.l, PRI ,-“V\)

Example 3. Let @ = (3,1,4, —2): and ¥ = (1,-2,3,0). Simplify:

J'S
-

~

@a+i= (3,1,¢,-2)+ (1,-2,3,0) = (& -1, 7, -2)

) 3i-45= 3 (31,4, -0) - &(1,-2,3,0)

(3.5, 2,-) - (,-7.1%,9)
(S" 1, o, -6)_

"
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1L @+9)+d= 0+ (7 +2)

£} F

i~
{l

+

41

2.

w

&

+

[e=]]

Il

Fl <y

Properties of vector operations. If i, ¥, and & are vectors in R”, and & and m are scalars, then:

5. k(@+7) = k3 +kd

Proof of 2. Le"‘

- -
wnw+v =

;’:(u”ul'...,u“) and '\7'-‘- (V,’Vl'..-’v,‘)_ 'n\t.v\
(Mnu‘l,"‘ ‘Mv\) + (VI,VI,"-,VV\)) ,{‘C ,ﬂ vec.‘ﬂr aAAl“bu

z (M‘ + VI, U +V, y oo, Wa +Vn) 2 AML\O“ . IR s pr\wm"*"i“"
= (V‘-G-M‘lVIl-Mz'---'Vn{—un) ')/ M p l'o add“f
. v ' (TIow |
= (VI)VI,"',V’\) + (u|) 'u"-l'“!un) ’ “
- -
=V or o,

Example 4. Let i = (—1,4,6) and 7= (3,3, 3). Find the vector # satisfying 4% — 2% = 2% — #.

b -1 =22 -3 = 23 = 2a-3
2 -
= £ =32 V)= 243
= (-l'L('é)- {(313I3)
§ £ A
= (—ia z, ?.).
ar /_’__________
‘5‘9\/ 2000 ‘ﬁég-':
\{Iheorem‘/lf 7 is a vector in R™ and % is a scalar, then
1. 05=0 2. k0=0 3. (-1)7=-7

Proof of 1. Lt."

'\',"‘—(v,,vz,.-- . Vn )

T‘Mv\’

O:’! = O(VHV,_' T V") * (OV,’OV.,_'.--, Ov“) N (o'ol T 0) - g .
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A vector w in R™ is a linear combination of 7,5, ..., 0, € R® if
- - - -
w = k.V. + kz V1 +--. % kf‘ Vr , wl\yﬁ. kl, "‘l,"',l(r are

sealors.

Example 5. Find scalars c1, ¢g, c3 satisfying ¢;(1,2,2) + ¢2(0,1, —1) + ¢3(3,1,2) = (-1, 7, 7).
s .e. wr.‘l-: (",7,‘7) as &

|n‘v\.¢ar co-«lm‘nq‘-v‘ou OQ (',2,2), (O'I'—f\‘ (3,')2).
’n\is eiuu“duv\ iy eiuJ‘Valut"

Lo ‘I‘Lw_ lmear S‘GS‘\"%
c, * 3¢, = -1 \ e 3 -1
ZC' + Cz + C‘s = 7 e——% yA | ! 1
- A | 2 7
ZC( - Cz + 263 - 7

WQ- Con rep‘m I‘t\rs “O rr{,-p umxl apw.g §- :ywo‘:m a'liwi‘m L"'Jh .

\ o

<
o | : —|\l “ rre,Q. Qr I«,,_a, ;,69L.m
6 © o - .

Tk o

' ¢, =9, Cp=-l, € =72,

Example 6. Show that there is no choice of scalars a and b such that a(3, —6) + b(~1,2) = (1,1)

We weeld o solve He 916?"0\«

Ta-b = | _— ['5 -1 I ' ﬂz+2l2;>
~bo +26 =41, 6 z 1
’ﬂ;un is



Math 251 Spring 2023

Section 3.2: Norm, Dot Product, and Distance in R"
Objectives.

e Define and apply the notions of norm and distance in R”.

e Introduce the dot product of two vectors, and interpret the dot product geometrically

e Study some properties and applications of the dot product.

The norm (length, magnitude) of a vector ¥ = (vy,vz,...,v,) in R” is

N . l|‘ m
|71 2\]\,!1*‘/21*'-- PV pole Hhv goualizas Byfangoms

Dividing a (non-zero) vector ¥ by its norm produces the unit vector in the same direction as &

Example 1. Find the unit vector @ that has the same direction as 7 = (

gl = it (-2) - =3

KK F 1> (=) \FI' / 7= (21, -2)

2 eV syl (5409, 2-(5.4,-3).
)

dak [l (3 (O (2 = [E =1

The distance between two points @ = (w1, ug,

1,-2). Check that ||@] = 1.

.y Un) and T = (v1,va,...,0,) in R™ is

= J(Ul"V.\z + (U"n‘Vt)l LERRRE 4 (‘A"'v")z

Example 2. Find the distance between the points & = (1,3,-2,0,2) and ¥ = (3,0,1,1,~1) in R®

4(53, 7) = \ﬂl— 3+ (-0 + (2-1)"+ (0-1)"+4 (2_(“)?

M2,3)- |-

=JQ+°\+‘T+—I+‘1
= (32
-~ G 7.

—
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Euc(!'ob-ﬂm e Ffw(uc" n druneinstomal Buncle P
Math 251 i ; Spring 2023
The dot product of two vectors @ = (uy,ua, - . - ,Ur) and ¥ = (vq,02,...,v,) in R™ is
-
K-V = M‘V, & M'lvz e +uv\vy\. V\OLQ-' VQC,"O?'UCC.“D( -‘SCQ(ar'
fudbid

Example 3. Find the dot product of the vectors @ = (1,3, 2,4) and 7= (—1,1,-2,1)

7.7= (La24) (-1, -2,0)
— M- g4 +4
2.

ey

i

" -

In R2 and R3, the dot product of two vectors is related to the angle between them. (This can also be generalized
to finding “angles” between vectors in higher-dimensional spaces.)

”U‘" ” ” cos © v
=2 cosO - 3k % -
- w
21 () L
O obluye & u-v <O,

4
O awmbe & U
Example 4. Find the angle between the vectors @ = (1,2) and ¥ = (3, 1).

2 V-, R IN= e

) 2 © 2V s !
co < == - - — F— - °
N ’ R Tl T I i

Example 5. Find the angle between a diagonal and an edge of a cube.
2
(i,0,1) - (n,o’o)
| Arwaom' - (‘)'» ') co39 - —
| Cro DI IE(, 0,00
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Notice that the dot product of a vector with itself is the square of the norm of the vector.

I'p 72 (vl,v‘l.’"',vv\) S o vac!‘or i lg“, H"-LV\

VeV =vtegt e syt = VP

Properties of the dot product. If @, ¥, and @ are vectors in R”, and k is a scalar, then:

L= yv.u lor “S'sm"*r‘j" (I(OJ’ Pmo(uc"' ('-wanu"us)

3 — (—,+ —-) -y - 4_ - =5
= o W
u-v+w wn- v 78 o(pL Pl'w(‘*"— AP}‘V‘L«L—S over ap(ol.‘le-\
- -t
4. (@+7) F= A0 + vow

n

5 k(d-7) = (l‘a "\-/’ = :' ll.‘\-l’) ‘\l‘\OW\o%ng‘La

6. ¥-92>0,and ¥-7=0if and only if ¥ = 0. “Poyl"-‘vv'lnh

Example 6. Use properties 1 and 3 above to prove property 4.

(U\ +V = —1:)'- -u? +\-7 lhs P"’P"La
= 'v:;-;-’ +‘v-:)'—\7 L‘a PNPW"‘Q 3
D ReR VR by properky 4.

Example 7. Expand and simplify the vector expression.

eira ei-9= 22 (32-7) + 33 (32-7)
2 6 (2:3) - 2(2-9) + 4(3-2) - 5(3.9)
= 6 RN - 2(2-9) +a(2-9) - 3@y

cognaE + (@) - s8I
s
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There are two important inequalities involving norms and distances in R"™.
Cauchy-Schwarz Inequality. If i and ¥ are vectors in R™, then:
@ - o] < [l (|9
- -
nole:  Hhis implies Hat -1 ¢ m ;“ ;{V“ $1 ) so we can define

(7]

i
the Mc_gle be heen R and v as © = cos (uallﬂ'\‘hl).

Triangle Inequality. If &, ¥, and & are vectors in R”, then:
(2) i+ 31 < 1] + 5] bramae  equalhy  Br echors
(b) d(@,7) < d(@, D) +d(, ) briangle  inequally [ dishances

-
n

<y

d
+
<}

Proofos—‘ (“‘ .

|2 «30*

L aN

I

2.2) + 1 (2:9) + (2.9)

oriqin
(R ) (@ +9) — beconse j2i*- 2.2

sy
<)

qrpl\s a.LSalu‘t Va(uc Lo

o N N

S NRIE + 22010 « 19)*

(Ve « 1)

Beeawse [@ +7][30 wd IZU+(TU%0, we bae & «TUCIRY + IR,

Example 8. Suppose that ||| = 4 and ||7]| = 3. What are the smallest and largest possible values of ||Z+%/|?

&« 3]
i

Thus

I

IR0+ UFN= 643 =7,

NN -V UBTY 0P 5o b €(ReTl 43

1]

[2+30%1 ) ad Hele 14T +VN€T.

4
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In plane geometry (that is, in R?), the sum of the squares of the two diagonals of a parallelogram equals the
sum of the squares of the four sides. This result is also true more generally in R,

Parallelogram equation for vectors. If 4 and ¥ are vectors in R?, then:

%+ @ + 1% — 312 = 2 (Jalf® + 5)1%) .

v

&1

S

4

£
)
4+
Sl

\
<}

e

W

(izrj)ﬁ!_(;’ +7) o+ ( 2-3) (& —‘\'7)
(@) + 2(29) + @) 4 (@-R)-2(2-9) & (¥-7)
21(%-2) « 2(9-9)

2(ll&*u‘ + llt?u‘).

1"

Taking the difference of the squares of the two diagonals of a parallelogram instead gives a different expression
for the dot product of two vectors.

Theorem. If @ and ¥ are vectors in R”, then:

1 1
5= i+ P - gl - .

e

Proof. 7 & +3I* - L -9yt -

[
e

3 @) (@2+7) - L(2-3)-(2-7)
L ((,;v,;:) @+ @N) - 1 (@2 - 22-9) »(0’-0’))

(4(2-)

4
-
v

A
4
-3
(V.

1"

5‘
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Section 3.3: Orthogonality
Objectives.
e Introduce the definition of orthogonality in R™,

e Represent lines in R? and planes in ]R5 using vector equations.

e Project a vector onto a line.

o Write a vector as the sum of two orthogonal components.

In Section 3.2, we defined the angle @ between two vectors % and ¥ as
S = =
WV \')

O = cos” | 121070

Y
<y

The vectors % and ' are orthogonal (or perpendicular) if

- LQ a.v o =) 9 S acu"(

- - 5

K-V =0 = ;’-i?=o == O it a rvbhl-a..{(h
:'? <o =) & 6 ob(‘u‘{

Example 1. Show that the vectors @ = (1,-2,2,5) and 7= (3,2,3,—1) in R* are orthogonal.

—J-V'— (\,—'l,z,f).(z,z,?,—l) = ?-4 +6-¢ =0
TLU-\S :?. auo( U’ are or'“'*%ovw,

Notice that in R™, the standard basis vectors €1, €5, . .., &, are all orthogonal.

eCS' 2'-2*'; (l.o'---)o)'(o,o'.-.,I) = O,

Pythagorean Theorem in R". If i and ' are orthogonal vectors in R™ then

i+ 1P = ) +
Proof. [ @ +TU% = (R+T)(247) = (2-2) » 2@3) + @7
—
=0
= |z . Il’\“l'z
ful sV
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A straight line in R? can be described by specifying a point and a normal direction (that is, a vector orthogonal
to the line).
I‘p (7(, 5) s Ov\j Ponl‘ on HAL l“"\l L)
LY\ 2=(a,0) =
A 1] o)
(normal deckor)  Hun (%o, 4-u) is oFHogendd o @

= .
Yo - ' N e ('x»xo, 3—\30) = 0
(09 (a,6) - (%o, 9-99) = ©
7‘; % a (x-%) + b(‘d"‘d"):O‘(
or: ox bﬂ +Cc =0,

Example 2. Write an equation for the line in R? through the point (1,4) with normal 7
diagram indicating the point, the normal vector, and the line.

7 ("’ Ho,y-yo) =O = (—2,1)-(x—',5- 4) =0
= 20— + 1(3—4) =0

2
=) —Zx+5-2=0. /

The same idea can be used to write equations for planes in R3.

/

-

W . (7‘-—7(." 4-Yeo , 8—39) =0

(alLI C\)'Cx'x", Y-Ye, Z-20)=0 |
fa(%—xo) +b(‘ﬂ'ﬂ°) +C(Z— a) -0 [

or: ax+—bb+c% +rd =0

Example 3. Write an equation for the plane in R3 through the point (2, —5,0) with normal 7 = (1,3, —1).
-
V\'(”C”‘v,'j’ja, Z—Z.)‘—O = (1',?’—1)'(1—2,3*-5‘/ 1?) =0
= (1-274—3@3*«5)— 2 =0

=> ,,,_4.3.3_;5 = +(3 0.
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In Chapter 1, we introduced (orthogonal) projections onto the coordinate axes as examples or linear transfor-
mations. We can now extend this idea to (orthogonal) projections onto any line in R™.

Projection Theorem. If @ and @ are vectors in R™ with @ # 0, then @ can be written in exactly one way as
U = Wi + Wa, where 1 is parallel to @ and s is orthogonal to @. Specifically:

- TR . . U 7 S
Wy = projzi = Tale a and We = U — Projzi = @ — TEE a.
-3 -
ﬁl_‘a:’ U\Zl = ka’ and Wy e 5.’ = O ,
—_ - - = - -3 - - -
Ao = Wy ¥Walea = W ra +wy
- 2
= ka-a +vo0 = ku&u
- 2
w:* o
= k== —0= | s
S Hall
— > - -3 < S
-0 . Qa w _ wn-a 2 ;3 _ : Wwe o 2
W, = 74 = T - -
VPR I -1 [kl

Example 4. Let @ = (1,2,3) and @ = (4,—1, —1). Find the component of  parallel to @ and the component
of @ orthogonal to d.

Compowml‘ // ’L" 2:

L2 e o A ECR] ( (a-u (3 T
P2 -~ I aI* (4,1, -0 (4, -.) 18 (2)

2 L oy\_ (fu 3 53
:_ijé?j - (h'L,‘)"(“L (g, ‘e) - (q ) (& 7 (8

The norm of the orthogonal projection (of % onto @ can be written either in terms of the two vectors or in
terms of & and the angle # between ¥ and &.
- -
| X<
4

: lomia - || i 3+ e 191 - 152

!
{
t
{
f
l

) 2| &) ceso

~ §-2 (20 T = 9;‘"3“ cos O .
| proj 21 = IR coso 3 AN

[e 13700 v\ﬁ 6
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Example 5. Let L be a line through the origin in R? that makes an angle 6 with the positive z-axis.

(a) Find the projections of & = (1,0) and & = (0, 1) onto L.

E"(Cose, sfm@) is a vehor H-a. o(nrecﬁrou. eﬂ L
ped (1,0). (cos,stin 9)

PNz @ P (co5, 508) = (c5°0  cosOsm O)
P'md? g" . & ) (coze, 29 (cos8, m0) = (cw@sm@, S’MZG)
|

(b) Find the standard matrix Py for the linear transformation 7' : R? — R? that projects each point onto L.

' . [ 5 cos*®  cos® s O
PQ - [PR’J'&' e Prox\ge"l - cos@ sm & sin O

We can use the previous example to find a linear transformation that reflects a vector/point about a line
through the origin in R2.

4,

PR s (U2 + 2) [cosze smze]

sin 28 - o520
— ®= —‘
= lg 2649 * I) 7

05°0- | 2cosOsmO ]
2¢0s0Sin0 25O~

=) Hé -:2Pe-I:

Example 6. Let ¥ = (4,1) and let L be the line through the origin that makes an angle of 7/3 with the
positive z-axis.

(a) Find the projection of Z onto L.

g
0 cos” cosTsm § t \%" P ((4 G \% 4| bt
% |3 3 ¥ I ") 18 3 e 3
N Lo £ S R i Vg &+
(b) Find the reflection of Z about L.
cos F s\\az—;-r -3 8 g g_ . —2+€-
3 , 2 ( - -
- - ‘) - ® |
Hy - uw 2 € .|, > H% “ T 3 23 +3
3 s g T s 3 2 1
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Distance problems.

The distance between a point and a line in R? or between a point and a plane in B3 can be found using
projections.

Theorem.
1. In R2, the distance between the point Py = (x0,%0) and the lineaz + by +c=10is

_laxo + byo + |

Va2 +2 noreanl S
e D= (ak,e)

2. In R?, the distance between the point Py = (o, yo, 20) and the plane az + by +cz +d =0 is

D

D— |a:170 + byo +620+d[

VE+ R
Proof of 2. Choose P = (,9.,8) m He P(w , ond
ek BBy onbke R
o | P, = (o, 4, %) Pryee to °
n AN —ly
- (akd D =l projy PR

(1]

l (*o—x., Yo-Y,, 2o~ 3.\-(a.b,c)|
o Y

. ‘a-x,—ax, + b-ﬁ,.-bn‘ r cz-,—cz.‘

Jaz tbt+c?

?I = ("(n‘ﬁu %.)

b/c P' TS n H"» P(QM )

b A o _ |a7(o+b'jo +CZ‘9+0(|
a')(‘+‘5|+C?:,+ =, B

J at+b® +t
= -ax, -by, - cg =d. N

Example 7. Find the distance in R? between the point (1,—1) and the line z + 2y = 3.
A= |, b=2, c=-3

[|(0+2(—')+<'33, i L‘_‘L'. . 4
P = %+ 20 \rE s .
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Section 3.4: The Geometry of Linear Systems

Objectives.

e Write vector and parametric equations for lines and planes in R™.

e Express a line segment in vector form.

In Section 3.3, we saw how the dot product allows us to write vector and scalar equations for a line in R2 or
a plane in R3. Specifically:

e the line in R? through the point #y = (29, 1) and normal to the vector 7 = (a,b) is

7\'. ('i"... ;Z,\) = O er a(‘l—Xo) + ‘0(3-'30) =0 .

e the plane in R3 through the point Zy = (g, ¥, 20) and normal to the vector 7 = (a,b,c) is
i) ‘4 - -
R.(x - xo) =0 or a(u—x,) + b(&j"jo)-\- C(%"Zo) =0 .

In this section, we will explore how the equation of a line in higher dimensions can be written using a point
on the line and a direction parallel to the line, and how the equation of a plane in higher dimensions can be
written using a point on the plane and two (non-parallel!) directions parallel to the plane.

Suppose that & is a general point on the line through the point &, and parallel to the vector 7.

> ?—‘io A V&l-or an Hu‘y II‘V\L 'S A )‘m(ar MM“‘JPIL
of V.

-2 -
2“7‘-9'—' 'EV

/
== 7—2 = 2, + ":-;IP
°-"“‘5"V~ apn- Pi-. = ﬂ‘xml P"- + Pamukr-a(frep,‘-l‘ow

Example 1. Let L be the line in R3 through the point #; = (3, —1, 5) and parallel to the vector & = (-2,1,2).

(a) Find a vector equation for the line L.
-72 = ;o stV = ('s’,—l,s) + ¢ (—Z,\,z), N (3—2{',—“-6, S‘+2f)‘

(b) Find parametric equations for the line L.

2 = 3-2¢ , 5=—-[+£ ) 2= S +2¢%
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Suppose T is a general point on the plane through the point &, and parallel to the (non-parallel) vectors %
and 5.

= _ %,
L A VwLDr ;2—;20 v Hu_ P(a"" is O l'\wuxr

Example 2. Consider the point Ty = (1,4,0,—3) in R* and the vectors & = (2,—-1,1,0) and 7 =
(3,-6,5,2).

(a) Find a vector equation for the plane through Zy and parallel to both #; and .
X o= Kot L.V, + 4V, - ((,a,o,—s) + £, (z,—:, 1,0) + é,,(?,—é, 5',2)_
(b) Find parametric equations for the plane in part (a).
w = | +z{‘+3£2’ w44, -6t y * £, +st, , z2=-34+2¢,.

Example 3. The scalar equation = + 2y + 3z = 4 represents a plane in R3.

N
a) Find parametric equations for the plane. — “%e hue vormbles oy wcters -
pova

LGAI' 3‘3&. a.\d %’-éz. ‘TLl.u
® = 4—2“:,—3{:2.

(b) Find a vector equation for the plane.

—

2L = (4-2&,-3&1, t, l:,,) = (4,0,0) st (-2,0,0) + 8(-3,0,1).
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Any two distinct points &y and #; in R™ determine a unique line:
-~ - -2
e AR 22 o t(R-%)
\ - or c,.-:." ?: ;'—i. s
%o 2,0 T~ dicechon pualle] o
i
l| ; - (|—£) ;°+ %)—2' wece (o3 P”ﬂt
origin He loe.
Example 4. Consider the two points £p = (1, —1) and #; = (0,3) in R2.
(a) Find a vector equation for the line through %o and 7.
2 Xo + {:(32,-;‘2,) = (1,-\) + e(o-\, z—(-l)3 = (| ,—u) + %(-c,a),
. . L 3
(b) Write a scalar equation for the line in part (a). 2. E (o, 3)
e
From x=1-t and 3:-[4'((&) we  |ave 4 5’3_41
E=l-% and 4t = | + Y -

Thus

Wy gy o wmsee TN

To describe the line segment connecting two points £ and Z; in R™, we can restrict the values of the parameter
t to the interval [0, 1]:

- ||'vq,,2m,' -
2 J X Ror b(R-R) | ogkq
B 3 =1 o
*® 2, .
. 2= (-0% + t%, , osft<l

Example 5. Consider the two points Zy = (1, —4,—2,5) and & = (4, -2,7,2).

(a) Find an equation for the line segment from 7y to 7.

2= (1-0(1,-42,9) + £(4,27,2),

(b) Find the point on this line segment for which the distance to %y is twice the distance to &;.
2 -
24 t2% (e § of dobnce fon 7o bo %)

oLt

~—

<.

-

-
- x

A, x 7 (l--f:)(l,—G,-Z,r) * %(“,'21712)

i _4 2 &£ 2 -4 4
(3, 3:—3,3)‘*(3) 3/?1%

% =(3,’%, LI,S)
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Recall that a homogeneous linear equation has the form

a\‘X-\ + QIXZ* L + a,\xk = O

- —
or - 0:-76 = 0O, le.ﬂ. ?.:(a‘,az,...,c\n) anal ;2:(7(',7(“.- ,xh')'

Notice from this that every vector that satisfies a homogeneous linear equation is orthogonal to the coefficient
vector. In particular, any solution to the matrix equation AZ = 0 is orthogonal to every row of the matrix A.

Theorem. If A is an m x n matrix, then the set of solutions to the homogeneous linear system AZ = ( consists
of all vectors in R™ that are orthogonal to every row of A.

Example 6. The linear system

T
1 5 —-10 0 2| |z 0
3 -2 0 2 1| |z3| = |0
4 2 2 =3 1| |z 0
Ts5
has solution z7 = —2¢, 29 = 25, x3 = s +t, 24 = 28, T5 = 6t. Show that the vector

= (—-2t2s,5+1t2s,6t) < Solutions C,— yng‘.m!!l

is orthogonal to every row of the coefficient matrix for the system.

T %= (1,5, -10 0 2)-(-2¢, s, s+ ¢, 2s, 6¢)
2 -2¢ + 105 - (o(s+t) v o(2s) + Z(6¢)
= - 2L +W0s- 05 -0t + 12 = O.

A

e % = (?,—Z, o, 1, l) . (—26, ZS,S"I-E,ZS,G"-')
3(-2) - 2(2s) vo (se &)+ 2(2s) + 1(6¢)
~bE-Gs +4c +6E = O

————,

"

s

r3e % = (((,Z, Z, -5, l) . (—ZE,Z:) s+ € Zs, Gé)

: 8t + Ls +2s+2&6E —6s +6t = O,

——
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Section 3.5: Cross Product

Objectives.
e Introduce the cross product of two vectors in R3.
e Interpret the cross product geometrically.

e Study some properties of the cross product.

The cross product of two vectors @ = (uy, ug,u3) and ¥ = (vy,v2,v3) in R3 is AOL( : V(C"af)( vec"or
. = V&(‘D".
A X V - ( (Az_V; - Msvz ) “3\" - bl| Vz ) M. Vl - U‘I_VIX
U, U U U w, W«
= Vi Vil [V vy, v v,

(Note that the cross product is only defined for vectors in R3.)

Example 1. Compute % x ¥ for the vectors @ = (2,3, —2) and ¥ = (1,4,1).

27 = (G- (D, (DY =By | (- (30

7S
= (ll’—Q,S'\_

__.______,_.__—-

The cross product can also be expressed as a 3 x 3 determinant:

=+ =2 7
¢ ) k
. = - -
M X v - (}q u-,_ u} et (MIVS'Mgvz L - ((A|V3- ‘A3v|)“ + (u|Vz° szl k
vy Va V3
Lo - . -
Example 2. Compute ¥ x # for the vectors in Example 1. What do you notice? . WXV = = (7 x:)
D -
N ¢ ) - -
-y e - e -
Vexw = | (G | = -80 +2] #3k -8k -30 42
2 T -2
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Properties of the cross product. If @, ¥, and @ are vectors in R® and k is a scalar, then:

Liaxi= - (Txd) an R com pmutahive
-ut X -\7) ¥+ (&'x&’)) ‘Z)
(6313.7) ¥ (7&(5’)

2 x (%)

cross  predu ks Acshribuleg
addition

2. Ux (U+u) =

ever

4. k(i x v) = (ka)x ;," = S'C’_ale.f .M“”n‘p'&s &Lp\«( ‘m‘tcla"

5 4x0=0xd= 3
6. ixi= &
- - .
Proof of 1. Let 08 '-'(“\,'AI,M'{) and V © (V|.V1,V3). TL_.,\
- e -? -
T T e i) h
‘Jxv= U, W U = = Vi ViV =—-(V’<u
Vv, v, V; U, U, u;
-
Example 3. Showthat@'Jrkﬁ)xU:ﬂx . °
- - > = - [ ALY
_(24-k—\7))(v = ux?)%—(kvxv) - un.xv)J—lL( )
<4 -4 S
= ((7173 + WO = «uxv.

a - T:
(@) ixj= © Iy
{ o o = .
o | o "7 ?xi
L
7 T’—lz o - -
> 7 L) _ - N -
(b)]Xk_ = L LKJ
o ( © _\Z - ’f”,(iz
o) e ) ¢
- o - s
(c) Exi= ‘ e
o =)
|

=l QJ

14

]
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An important property of the cross product is that @ x ¥ is orthogonal to both % and 7.

Relationships between the dot product and the cross product. If i, 7, and % are vectors in R?, then:
-

1. ﬁ-(ﬁXU)ZO i.e. ': Y or“"’\nsom‘ {‘O U-:"V

2 faxaf = [P 19" - @9 [aqrenge’s  idembily

3. 4-(Txw)=(dx7?) @ S'ca.(ar ‘l'“PlQ pmolw.{'

4. i x (7% %) = (i - 0)F — (i - Db vechor  drplt product

=) - -
Proof of 1_ Le‘- A = (u| ) Mi'Mg) aﬂd v = (Vl 'Vl,vs) ) Pl-t\‘-v\ - .
-) - —9) _

- =
TLM‘(ODPC. }j and w XV  ale oru\osw’.

Example 5. For the vectors @ = (2,3,—2) and ¥ = (1,4,1) in Example 1, confirm that @ x ¥ is orthogonal
to both @ and .

rCCau: :K-\_I’ = ("l—q,g).

sl
s
sl
»
<}
~
Y

(1.3’,4) . (“,-‘r, S‘) =927 —-l2 -0 =0

(La, - (-4, 8)=1l-16 +5 =0

<
S
*J
»
<)
S
!

Thas  bobh 2 aud T are orl'kngwa( lo wxy
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The norm of @ x ¥ is the area of the parallelogram spanned by @ and .

=
A

C (Pre Lagrenge) [P RRIC I - (2-9)

: lluﬂ Wl - N (V1 cos?O
- ->
i R I (1= cos70)
= |RIZUTE st?®
>

Taree [ < 7N = 1ZNIDI 5106 [ aren o0

Example 6. Find the area of the triangle with vertices (1,2,2), (3,5,1), and (2,0,2)

pam"e(osmm.
(z,5,1)

5
®
n

% ” (|,-1,o) X (2,3,")”

- 3 ” (z,1, D)
() e oo 2 5

2

I

Similarly, the magnitude of @ - (¥ x &) is the volume of the parallelipiped spanned by @, ¥, and w
s

' »

Vo(uvwz,‘— INM‘SM' X area of base

-(i@hees 1) (1 )
(2L 2N Lcos ]

|3 (7))

Example 7. Find the volume of the parallelipiped spanned by (1,2,2), (3,5,1), and (2,0, 2)

11

H

\Jc[um =

- l (l,l'zB.((‘z,S"l\x (‘L,o‘z))l : l(("z,l)-(lo,-q'-m)

llo-s—‘w\ =l—(8” =1 8.
Theorem. The vectors i, ¥, and @ in R3 lie in the same plane if and only if @ - (¥ x @) =0
ie. He vdume spanned by X,V3 s zew, so Hese vechrs debenmine
o ﬁa" S‘—MCace mHu.r qur\
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Section 3.3: Orthogonal projections in R3
The orthogonal projections of a vector & = (z,v, z) in R® onto each of the coordinate axes are given by:

z) = (,0,0) projection onto x-axis,

T (
projection onto y-axis,

Ty(f) = (Oa Y, 0)

T.(Z) = (0,0,2) projection onto z-axis.

Problem 1. Let # = (z,v, z) be a vector in R3.

(a) Show that the vectors T, (&) and T (&) are orthogonal.
(x,0,9)- (o,4.0)

2.0 + 0-3 + 0.0

@) T

= 0.

s TR and Ty®) e or Urogoral.

(b) Show that the vectors 13 (Z) and & — T,(Z) are orthogonal.
(u‘ o,o\) . (('u,.d,f) - (x,o, o))
(x.0,0) - (0, 4, €)

O .

1

@) (2- ()

\l

ﬂms "T_;()?) au‘( ia'-’f_;(;?) are oru\aap"\n'-

(c) Sketch a diagram showing &, T,.(Z), and & — T,,(Z).
Za
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Section 3.4: Transformations of lines in R"

Recall that a line in R™ can be represented by the equation

where T is a general point on the line, &y is a fixed point on the line, and ¥ is a nonzero vector parallel to the
line.

Problem 2. Let T4 : R™ — R"™ be an invertible linear operator, so that A is an invertible n X n matrix.

(a) Show that the image of the line £ = Zy + t7 in R™ under the transformation T is also a line in R™.
=\ _ =
'TA(X) TA(x, + {"\7)

Ta (;za) + ¢ T;(V)

%

Ax, + t+ AV,

(&Ca.uSL n 1-20 v oa VQC'Lr

n
" “Z, and AV s a nonzer

VCC"OI‘ n lR“ (S‘MC& A is TV\VC""’UQ\ ) H'\"S ftprc.wnl's a ll"‘\l n IR“

(b) Let A = B _14} Find vector and parametric equations for the image of the line £ = (1, 3) + ¢(2,—1)

under multiplication by A.
IR RS (R RS R B MR A
The  iwage of He lme = (1,3)+ t(2,-) s

He line 2=(9,—¢i) +{:(?,IDB_

The Pamw\cl-r.-c_ exv«al"bns afe xS +3E  and Y= q+lot.
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Section 10.1: Constructing Curves and Surfaces Through Specified Points

Lines in R?

Any two distinct points (z1,71), (z2,v2) in R? lie a (unique) line ¢1z + cay + c3 = 0, where at least one of ¢;
and cg is not zero. This implies that the homogeneous linear system

zey+ yea+e3=0
z1c1 +y1ca+c3 =0
zocy + Y2z +c3 =0

has a non-trivial solution; equivalently the determinant of the coefficient matrix is zero, which gives the
following equation for the line through (z1,y1) and (z2,y2).

T oy 1‘
zy 1 1/ =0
T2 Yo 1‘

Problem 3. Consider the line in R? through the two points (3,1) and (5, —8).

(a) Use the determinant above to find an equation for the line.

x4 |
3 1| =0 = xll Ta-ul® '] |\=O
s -g | -8 1 s s -8

= x(l+?§—\3(z-§) ¥ (—zt.—s') = O

=9 qx+13—2‘1=0
. A

(b) Find the points where the line intersects each of the coordinate axes.

e e -

The e obosecls He axes of  (L0) ad (0,8)

n

(c) Graph the equation from part (a) to confirm that the line passes through the two given points.
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Circles in R?

The same method can be used to find a determinant equation for the unique circle
cl(m2 + y2) + ez +esy+es=0

through three points (z1,y1), (z2,¥y2), and (z3,y3) not on the same line.

Problem 4. Suppose the three points (z1,%1), (z2,%2), and (z3,ys3) all lie on the circle ¢1(z? + y?) + coz +
c3y +cqg = 0.

(a) Set up a homogeneous system of linear equations in ¢, ¢a, €3, and cq4 satisfied by the three given points
and a general point (z,y) on the same circle.
c\(x‘0—3‘) +Cyn C‘S‘j + Cq 20O
C(xPeygl) + G2+ Gy, v O
¢, (xryd) +Cx, +C3Y, + Cq 2O
C,(x;z"‘d;.‘) ¥ Co +C?':jz + Cg O

(b) The system in part (a) has non-trivial solutions. Write a determinant equation to represent this.

'

xt 1 y? o Y !
-x‘z > '2 b4 . ‘
i ‘ 2 . O
AP wy )
1.2 |
Ay l—‘j; Az Yz (,4‘ 6)
(c) Find the center and the radius of the circle passing through (2,—2), (3,5), and E&=8).
AR x 9 u
3 2 -1 !
=0
34 3 s l
§2 -4 +6 |

= SOx? + 100x + S'OST' "200.3 - jooO0 = O
‘;"-5 ')Lz-l-ZsL + ﬂt'aﬂ - 20

= (we)? ((d_zy‘ = 2¢ conle— = C-t,z> , rodins = S

(d) Graph the equation from part (c) to confirm that the circle passes through the three given points.
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Conic sections in R>

A general conic section in R? has equation
az® + cory + c;;y2 +cqz + 5y +cg = 0,
and is determined by five distinct points in the plane.

Problem 5. (a) Find a determinant equation for the conic section through the five distinct points

(Ila yl)’ (:1:21 y2)7 ($37y3)7 ($4, y4)1 ('T’57 y5)'

ny 5" 2> 4 i
xlz %4, ‘5(1 n,y Y !

Xzz ,('!‘jt %t A lAg { O

B gyt g gy
T
Ut 2

< ‘K;ﬂr S{ X Ye i
(b) Find an equation for the conic section through the points (0,0), (0,-1), (2,0), (2,—5), and (4, -1).

LA T S L g

o o o o o |

(v o | o -1 |

A o o 2 o | - e
4 -0 ¢ 2 -5 |
6 -4 ! 6 - {

=) 6O % + 37.'01.5 + 32031-3201. + 320 4 = O

+27(lj+ﬂ1-2x4,23:o

(c) Graph the equation from part (b). What type of conic section is this?

Qa Pml?o'ﬂ m
S At
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Planes in R3

A plane in R® has the scalar equation ¢;z + coy + 32 + ¢4 = 0, and is determined by three points not on the
same line.

Problem 6. (a) Find a determinant equation for the plane through the three points (21,91, z1), (22,92, 22),
and (z3,y3,23).

x U 2 |
x, Y, Z, 1
=0
n, U, % !
Ay Y &; |

x Y z {
2 | 3O
A =>  Ilx + by -12-] = 0.
{ { 2 \

(c) Graph the equation from part (c) to confirm that the plane passes through the three given points.

Spheres in R®
A sphere in R? has equation

a@+y?*+22) +er+ey+caztcs =0,
and is determined by four points not in the same plane.

Problem 7. (a) Find a determinant equation for the sphere through the four points (x1,y1, 21), (Z2,y2, 22),
(51737?;/3723): and ($4,y4,Z4)- 3

7(,7'+|j,z+2,z x, Y, 2, l

7L"+32+32 2

RS E B oy g, 2, | = O
'131"" ﬂ;‘z + 332 X3 Yy 23 [

2
Xy *ﬂq:”"g«.z X Yy Pa

(b) Find an equation of the sphere through the points (0,1, -2), (1,3,1), (2,—1,0), and (3,1, —1).

xt 4,5‘-4-21‘ ®n ) z |
s o T -2 |
i I 3 | { £¥o) =) ‘)tz"z-u + .32—‘2.3 + 2% ¢ g .
< 7 -1 o {
it 3 b |

(c) Graph the equation from part (c) to confirm that the sphere passes through the four given points.
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Section 4.1 Real Vector Spaces

Objectives.

e Introduce the vector space axioms.

e Discuss some examples of real vector spaces.

A vector space is a generalization of the vector arithmetic in R™. A (nonempty) set of objects forms a vector
rea‘ V\IMMhT.

space if it satisfies ten assumptions (axioms) that describe the rules of arithmetic for two operations.

V is a vector space.

1. fdand Tarein V, thenu + ¢ isin V. V is closed unoler aouil.'an_

2. d+v=v+4 )
axtons g Z-g afe : Pro‘aukq 99 aw(du‘llow

3. 4+ (U+ W) = (+0)+ @
4. There exists a vector 0 in V that satisfies 0 + 4 = @ + 0 = @ for all @ in V.

5. For each i in V, the vector —@ (the negative of %) is in V and satisfies @ + (—4) = (—#) + 4 = 0.

7. k(@ +7) = kil + kv

8. (k+m)il = kii + mi

)

Wector space axioms. Let V be a (nonempty) set of objects with two operations called addition and /calar
multiplication. If the following ten axioms are satisfied by all @, ¥, and @ in V and all scalars k£ and m, hen |

6. Ifisin V and k is a scalar, then ki is in V. V is closed wndar S'LA\‘W' Mu”-.‘F‘t‘tahOM-

. L
axtoms [-10 ant ‘PNFV‘"C-! ’ﬁ S'C“L‘f Muufpl"tal'tm

ulgud"’j lK

Strategy. To show that a set ¥ with two operations is a vector space: _~

—idebly Mo veelrs ot Heo scdass L
- iO(lv\hQi i’Ln., onml‘WV\S OQ q__d_ﬂ_(djoh anﬂ( S'Ca'm- ﬂm”’feh(‘g ow

- Sl’\ow QAxom § | av\A b l/\.olol (C(Me 000 V)
- S‘L.ow aXiouwas 2-S auﬂ( axiomg & 7-10 l’\Ou.

\
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Example 1. Theset V = {6} with the operations

0+0=0 and kO =0 for all scalars k
add"l'“‘" sealar M”‘d.al\‘ta'-fou.

is a vector space.

o~ - - -2 1y 'S
\/ s G(OQA\ bu,aus( CD’ 4—3 = 07 s v V AD\A kO =0 ¢ in \/.

- - - = - -2
ed . Ax'owa 5 (D7+(81~O)= S+ro = (O+o>+0_
\_,.-V—'—-/ W

"O*-o

Example 2. The set V = R" of all n-tuples of real numbers with the operations

T+ 0= (uy,ug,. ., U) + (V1,02,...,0n) = (uy +v1,ug + v2,. .., Un + Un),

k@ = k(u1, ug, ... ,un) = (kui, kug, . .., kun)

is a vector space.

€q. q—x;‘ ;Z eq. a@iom 1:
w = (u|,uz,"' “h) (V. ,Vl, .- \I.‘) k(c? +;7) - h(ﬂ,*\l.) =y, u“’,.vﬁ)

. (lt(uﬁ"!\,---, k (un +v“))

:'(vi +U\.'V1+M1,-—-’ V.\+u.\) - (kU\.“'kV“ T ku“+kv")
= (V“V‘{, ".;Vu\ (ul'ulp.--luh) = (lLM” T ky\“)* (kv' 7% kv")
= ke(w,, -, W)+ le(v,, -+, vi)

=@’\7+7. ’
= kR + k.

= <u|+V,' U,_*-V;' cee, M,\-I-Vy\)

Example 3. The set V = R™ of all infinite sequences of real numbers with the operations

= (w1, U2,y .-, Un,---) + (V1,02,...,Un,...) = (U1 + U1, U+ V2, Uy T Uy ),

v
kit = k(uy, u2, . .., Un, - ..) = (kui, kug, ..., Kun, . ..)

is a vector space.

-Dep“ue_ 8’—(0,0,-—-,0,--—), 'ﬂ\u\ 8 s \/:IR
Ip i = (M"Mtl A’ M"\.“') "'LLV\

i = . ) =
+o :(u‘)u")"')u"l'") 1-(0'0)..-, 01"') -(u';u'lr" el T i )
-
7y

eq. axdom &°

eomm———

sy

= (O, 0' ---, o, ..--) * (M”u-l'.--’u_‘,--->: (U\,, vy, “'.(A“'-—-) W

+

O}
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Example 4. The set V = My of all 2 x 2 matrices of real numbers with the operations

} G c(OSul uv\olkf

G T= U1 U2 4 vy viz| _ wil + v w12 + V12
U1 U2 Vg1 U322 u21 + V21 U2z + V22 add""'iau\
~ Ul U kuin  ku
Lt — 1 w2| _ |kun 12 — oloxd wnwolr scalar w“”'ﬂ'alfca L.,h
Uzl U2 kug1  kuze

nole'  He “webors” in Ma  are  2x0 palrices.

— (¢} [} - -~

axom S ¢ De e o = [o o‘S . (”“"‘ R
f

2 Uy U -

Rf “u [ “u‘k ’ ALQ\M_ ~Kk =

Uy
Wy WUy 1 ~hn } u‘t\S _ WUy = WUy,
Wy U ~Uy -Un et - Uy Uqg~ U2

“Uy -Wz Wy hadk _ -, +Y,, U2 + U _ o O ,:_67
4 - i o ©O .

- -
(,d) fuw o=
'-Uh.‘ -1 X M"l 'u‘h ¢u1| "M'_-l "“11

is a vector space.

"
(]
Q
-+
b

sl
+
™
1
5y
"
11}

Example 5. The set V = M,,, of all m x n matrices of real numbers

Ul U2 o Uln
. Ug1 U2t U2p
U= .

Um1l Um2 voe Umn

with the operations of matrix addition and scalar multiplication is a vector space.

(TLa, “wcLom" AN Mww\ ase WA XN ML‘I‘N—S OO f‘m[ nuML._rs,
Msa s

Y

T 2o vechr BN

v © (-] -]
< o o o o
O = o o o ]
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Example 6. Let F'(—o0, 00) be the set of all real-valued functions defined on the interval (—o0, 00).
For f = f(z) and § = g(x) in F(—00,00), we define addition and scalar multiplication by

F+3=f(z)+gx) and kf=kf(z) for all scalars .
Then V = F(—00,00) with these two operations is a vector space.
Q(—,Q 4 3(1-) awd kf&) e ta F(—m.“) , jo Flm,o) s closol
wder  addibon  and  sealar Wmlhplecahou.

-
axow 1° -P +§ = f(x)+8(x) = S(*M—Q(u\ = g +Z.

e

axtom &* ?egw 8=0 a.— all 2% (-00,0°>. Then

oA
P———————,

—f+3=$(u)+0=f(*5=-§, 8*—?:04"”"):?("):?'

axom S° Delbae —?=-p(x) Then
TP = Ll (00 = Loo-L= 0= 3.

Example 7. Let V = R2. For @ = (u1,u2) and ¥ = (v1,v2) in R2, we define addition and scalar multiplication

by
@4 U= (u1 +v1,u2 + v2) and ki = (kuq,0).

Then V = R? with these two operations is not a vector space.

—T[\FS su(‘ (wi“« l’LL al(a(il'v*om ond Mv\”lPll‘w"Nm d(l.pn-ul aL0ve> s'ql-rsﬁu

axouny =4, bub el axvm 10,

Lk 2= (»,41), wlare w0, Tha

«) = (1w, 0) - (a,0) #R.
bey olef.

That 0 Hue are vechrs @R i R e W A&
Tlaelore, Hs 5 woF a veelor space.

12 = 1 (a,
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Example 8. Let V be the set of all positive real numbers. For @ = u and ¥ = v in V, we define addition and
scalar multiplication by = N sealor wanl Pln‘u.ho-\ in V

@ and 7 =uk.) is CXPOM{v\I“'a"b“\
V\

Then V with these two operations is a vector space. ‘dddi o fA V S aaam mplrcq"lou oﬂ f(al "w\mLers.

I? u,Vv Pos'l’-c‘ut Han wv s Iaoﬂ!-‘ve. IC w s Fas)lw(, Han uk i PoS'i\lfVQ.
—wal' S, V is  closed wnoler  Hese o oemlfoms‘.

- -
axom & Dofre 0=l Thn W+o=mlzu:=K
Xiom,

axXxiom 1 F'-Or AU\S sm'ar l(- :

(23) = @™ = GO = kd s k¥

Some properties of vector spaces. Let V be a vector space, let @ be a vector in V, and let k be a scaler.
Then:

1. 0@ =0.
2. k=10

- L - )
3. ()i =—u i.e. -1 bwes @ e:l/w:(s He r\csal-l\lc op “ .

4. If kit = 0, then either k =0 or & = 0.

Proof of 1. Proof of 3. w "‘(")‘7 = g
o = o +3 axiom & We veol to shao Hat €T
. o2+ (oau(.o:)) axtom § ie. -2 sahsfes
axdou. .
- (02+ o)+ (o) aom's TrENR =R+ (VX apom 10
. (o+0) @ +(-02) anom ¥ 2 (1+EN) R axiom 8
- 02 + (coa) oOo=0 : 0 Ll -eo0
: 8 axcom § I Prown 1.
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Section 4.2 Subspaces
Objectives.
e Introduce the notion of a subspace of a vector space.
e Determine whether a subset of a vector space is a subspace.

e Discuss some subspaces of real vector spaces.

Recall that a vector space is a set V' that generalizes the vector arithmetic of R™ — vectors in V' can be added
or scaled without leaving V', and these operations are consistent with the usual rules of arithmetic.

Suppose that W is a set of vectors in a vector space V. We call W a subspace of V if W is a vector space
with the operations of addition and scalar multiplication from V.

.. & S'ulOS‘pgce, IS @ vac‘or ;'Pa.w insib‘l. a ,4"3¢r VQC."vr s*loace.

Example 1. If V is any vector space, and 0 is the zero vector in V, then W = {6} is a subspace of V.
¥ ey vechor iw W s alse ™

NL\\37 W C'EV and W= gag i oa veC“or Space.

Six of the ten axioms for a vector space are satisfied by every subset of vectors. The four axioms that need to
be checked are:

- c(oswre wndler Ap(ﬂ‘.z‘l-‘o-« axrom |

- e_;u‘sl'eb\m_ op ? O KtowA 4

= 6Xi$l"M¢ aec Msa‘ﬂ\le.s axtow §

- C(oSuN- wndur gea'ar Mlhplﬂm‘-ﬁom. Aldom~ 6

Subspace Test. If W is a nonempty set of vectors in a vector space V, then W is a subspace of V' if and only
if both of the following conditions are satisfied.

1. fZand Farein W, thend + ¥ isin W.

2. If @ isin Wand k is a scalar, then ki is in w

Strategy. To show that W is a subspace of V:

- S'L\ow H‘\A" ip n ;21 are W . H"lv\ :. +—|2'_ vy e

vy

7}
c ot Hab R W He LW s owow e all L.
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Example 2. If W is a line through the origin in R®, then W is a subspace of R"
- - - =? B -5
LQL W bf. Hq, 'W w = tV . IQ ®w, =SV and wa= S,V ,

W, &+ n, =

- =2 -
“ - = _ g"\?q- S,V = (q,+g,§v , o u?. n-at TS = W

s o Scalar, Han lew = k(sV):(ks)V

S0 ko s tm W, &mw& W s c(os:o( wnder M(di“‘ow and
ClOGch W'LDllr Sm(ﬁ.r Mu"'iplﬂ'Ca(‘iou, W

TP R=sV ok k

P

s a i‘v\L 9?4(,1 ‘Q

Example 3. If W is a plane through the origin in R3, then W is a subspace of R?

-— - - - - -
-Lp u\ @ ; vl + gtvt a\’\d uz = t|v' + {z‘qu ) “—LWA

M-q + V‘t (S‘V‘ * 91:’2) + (e\7¢+ el?t\ = (S|+’el) ‘\-7! + (gz*'tz) ‘7; .
I:p ‘R’—g’\? fl:?,_ end

5 a sealar, Hon
L kD = k(9 + £3) = (Ls)V, « (LE)V,.
3.V +EV
Z =5V, +tv, TCM W o - mLspﬂu .ﬁ "Z.';.
Example 4. The set W of all points (z,y) in R? with z > 0 and y > 0 is not a subspace of R?
Ts b 3 doed wwbe addibon, but s wnof
dowd  wuder scaloe malhghealion

35. -(2:(‘:') is iw W , Lu"‘

~l w = (-l,-l) is ".‘i'- A W

%) v\_i“ o YMIJCPALQ ocp (EI,

Subspaces of R2. Subspaces of R3.

T XEL

s Hemagn e origin s oo Ho oy
2 . PlW\LS “""OV\SL u‘L oﬁﬁv‘w

- R . R
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Recall that M,,, is the vector space of all n x n matrices of real numbers.

Example 5. Let W be the set of all symmetric n x n matrices.
(a) Discuss why W is a subspace of M.

—TIN.— Shama Op l‘wo Mww"'h‘ﬁ Mal'h"tcs e a i‘smn-e_l'ﬂ’t mlw‘x, au.ol

a sm!ar mu”—-"oll. ] a thml‘f"c Ml-n‘x S

—nms W s a S'ubgf)ace op Mv\n.

gamv\-.l. l‘f‘l‘( .

(b) What are some other subspaces of M,,,?
- oQiagpv\aJ merl‘cLs .
- upper -I-n‘anﬂu‘ar Md"‘ﬁ‘cts .

- |0w¢r ,rh‘awxsu\ﬂr ML“"C'-&

Example 6. Let W be the set of all invertible 2 x 2 matrices.

(a) Find two matrices A and B in W such that A+ B is not in W. (What does this example show?)
Ae[o] ad B[00 0] o i w (bemne deb o),
ok A+E: [ el % meb W (ble Ab(4+7)-0).

'TLWS W s r\t‘ 0(020( wnoler apldfl‘t‘ou, and Hawns o 'S t:\_g!"

—

A S‘vxbg.oate o'p M?-?--

(b) Find a matrix A and a scalar k such that kA is not in W. (What does this example show?)

p):[j, Vois e W (bfe &bAL0), bk o04:{0 T
ot W (W de(oA)- 0) . |

Thas W 55 nob cbsd wndee  sealar  wli o Hne
v owot a sabpace of  Ma.

Note: more generally, the set of all invertible n X m. matrices is not a subspace of Mpy,.

3
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Recall that F/(—oo, 00) is the set of all (real-valued) functions defined on the interval (—oo, 00).

Example 7. The set C(—o0, 00) of all continuous functions defined on (—o0, 00} is a subspace of F(—oc0, 00).

TP 06) anst 3(%) ace  contmuons, Hon oo+ a46)  and ke 060

are a|50 Con '\'v\u.ou.S .

Example 8. The following sets of functions are subspaces of F(—00,00).

(a) C'(—o00,c0) - all «C!‘s P where  H a(u-.\)a‘-\:c

S wnL‘nms .

() Cpcooce)  + all Pos L wlee He Lirst m
prritive
M ¢ an” -‘n"%lf duwakvzs are con'l‘l‘nuous.

(c) C®(—o00,0) q" p‘i‘s -p where eveny dlervalive
+9 % (_oy\huwous.

A polynomial of degree n is a function that can be written

p(x) = ag + a1z + - - + anz”,
where ag, a1,...,a, are constants and a,, # 0.

Example 9. The set P, of all polynomials is a subspace of F(—o0,00).

F(-»,)

C(‘”I“) 1

C'(-°°1°°)

TP plx) and g0 are g0 plyrowials | Ho. PO+ and  leplx)
are bﬂ“’\ Pcl:sl/\pmu‘als. Tt\u; Poo is a s'uLS‘,:aCC Op F(.w,m)_

Example 10. The set P, of all polynomials with degree at most n is a subspace of F(—oo, c0).

:—LP Pb"\' %(XB are Folsumw-’odf w:‘“« dﬂm é n, -"Lu\ P(x) ;-?/ (z) andk

krfy.') a’fe Polaho»ur‘a(s wdu\ o‘l.dru. $n.

aobet  Tf p)= -1x', 002 1420, Hun pla) rqlx) =2 by degree <2,
’Tl\q,; u\., s'(,‘- qp F.a{bb\ow\ia(s wl“« dz&m n 1S 1&‘— a S‘thFﬁCC

$ Floe),
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Example 11. Determine whether each set of matrices is a subspace of Mss.

(a) The set U of all matrices of the form [g 2;] Le{. A= [3' :b] B: [c ZCI Then:

Q+‘B: [&;C 2‘50.-;:)] is T A (‘l‘al({ A=A+, 'i= b'l-d»‘ awd
¥

kA - [ koa 2::] s W (.“l“_ x= ka, :j=l(k)

Ths W 08 a ru'ocpacc op Mu.

(b) The set W of all 2 x 2 matrices A such that A [ ] [ 1 ]

Lot A=[-. ZI U A[z& [\ .,\S[z [1 so A v W,
e[ 2 SABT[AT L = 24 s b oW

Tl'\w W s “_-_';_\‘ c[osd v\uu‘br s’calar mm“hrl"(a‘*‘oh, so 1§ v\_o_,' A
fmlxpacc oQ Mzz-

Example 12. Determine whether each set of polynomials is a subspace of P.

(a) The set U of all polynomials of the form p(z) = 1 — ax + az?.
TP p60s 1oxwnt and g00* |-2x+2%%, Hun pg ax i U
bat  pb0) #q )= 2-3% 3.2 s web i WL

’ﬂt\us A is p\_al‘ a fu’ofp“bc OQ P,_

(b) The set W of all polynomials such that p(3) = 0.

T pg “‘!"’QJ pB)=0 aud 1(?)“-0, Hun
(p+4) (3 p(3) +9()= 0 +0 =0, anol

(kﬂ (3) k p(3) = ko =0.
Thes p*q and l"P are in l/\)’;o W is a 9“1,;{,4& &Q E

)]

5
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Theorem-If W1, Ws, ..., W, are all subspaces of a vector space V, then the set W of all vectors in the

@ these subspaces is a subspace of V.

€ all vechors N ey sabspaces W, W W

a sub

space of R™.

Theorem. Let A be an m x n matrix. The set of all solutions & to the homogeneous linear system AZ = ( is

wlusz 0 A?ﬁz and AR,

)
-

awd. A(k;z.\ = k(AR): k0 = o.

3, Hun AGL+R)= AR, +AR, -3

The solution space in the previous theorem is called the kernel of the linear transformation T4 : R™ — R™.

Theorem. Let A be an m x n matrix. Then the kernel of the linear transformation T4 : R®* — R™ is a
subspace of R".

Exam

ple 13. Describe the geometry of the solution space for each homogeneous linear system.

1 -2 3| |z 0 'TL,_ s.lu\l‘t‘tan space 'S 2% =2s—3l:, 4= s, 2-=t.
(a) |12 -4 6| |y| = |0 a
3 -6 9 z 0 ‘n“‘s s A P‘(_eil. ‘H\muslo\ H\c 0"‘3”\ in

norwal veehr  (1,-2,3).

|
o
-

|
oo

= |0

'22 wt‘u\

1 2 -3 H 0] The solubon space is  x=-$t, y.-&, 2=t

Fafquo.‘ to :?: (’S.)"I ')-

|
ol =
— o~ N
||
N oo w
| N —
N e B
—_ )
I

’l—[\rs is '“AL P?—:\J. al' 'H'\l. oﬁ‘sM .

0 T‘L"S Pt } a |'_\:L "“V‘o-.a(h H-L 0“‘3“\ DS ,zg

[0] "—Lg, Solu{‘l'cw\ S‘Pac«. s x,:o) i.__o’ 2:0.

3
g 8] Fjl = {8] T folul‘mﬁu Space i a" ("l'sz') fn IR ’
0 0] |z 0
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Section 4.3 Spanning Sets
Objectives.
e Introduce the span of a set of vectors.
e Define spanning sets for a subspace of a vector space.

e Discuss examples of spanning sets in real vector spaces.

Let V be a vector space, and let @y, %, ..., %, be vectors in V. The vector % in V' is a linear combination of
¥1,Ts, ..., U, if there are scalars ky, kg, ...,k such that

w:k1771+k2172+"'+kT17T.

Theorem. If S = {1, Ws,...,W,} is a nonempty set of vectors in a vector space V, then:

a) The set W of all linear combinations of vectors in S is a subspace of V. = Spanl S
o . P :
(o, W 35 “spanned” by S).
(b) The set W in part (a) is the smallest subspace of V that contains all the vectors in S.
(This means that any other subspace of V' that contains S also contains every vector inW.)

= -
- - L = -9 -~
Proof of (a). L@l’ s a\w,+alu3!+... tacwr |V F b,w, +byw, +eoo & bebor.

Thwt ZoT = (2,833, » (a0 v o (b,

2 (ka)d ¢ (ka) 3, o v (lar) W

(&,COMSL W is C(OSLA (M‘\A‘-r QAA‘_"""‘ 00\0( se_a‘a,— VA H‘l'o’ tea l-lou\ ,
W s a l’)sfhc 3 o-p V

Proof of (b). 'IP W ’ 15 a S'uLJSPau. op V Hat contamg g’ Hen
W' s C‘OSco( ander  addi ,"0"\ le Sea ‘ﬁf Mu\”‘lfl'“cq'(-io’\ . ‘TL\\M W ’ con‘-m‘» $
au lear combina lwﬂs op vec Lort M ¢ , Se w' Con!"ﬂt’ws W

The subspace W in this theorem is the called subspace of V' spanned by S, and we say that the vectors in .S
span the subspace W.
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Example 1. Every vector in R™ can be written as a linear combination of the vectors €1, €3, ...,¢€p
b " T 1\
Le;" v © (V| . Vg, ---, Vv\) be « V(LC—LO" Y2 IE .

- - -
m _‘7: V|€,+ V’-el* "+ Vpea.

Tab s, ¥ 2, 30,8
i5, vV s n S'Pav\z e, e, -, e’ng .
Example 2.

(a) Let ¥ be a non-zero vector in R? or R®. Describe span{#}.
? .
R M

2 spam 3V 1 d wb o all scalar mulhigles

op v. 'TL\MS S‘Fq.,‘gvf D H—L K,« ,I'V\a

+L\N~\3L H\‘_ ori‘sw\ Pm I hl )lc v

v,

W

17,

(b) Let % and ¥ be non-parallel vectors in R3. Describe span{y, o2}

R 1

‘JA\\L tw ‘KZ E-W‘j vt_cl-or kl‘;?l + k!-\?l l"CS T l’L\n, Ph“‘"
=
'\7:. Aekenmined b'é V) owd ’31 ]
-y
"-L\IA.S Span ?i?,, V. 'S 'H'\I. P(WV\L vaks"\ H'\L
.\7 )
] Won‘ﬁm and Paru"t‘ lo IwH,\ V' Q,‘A V.
Example 3. Every polynomial in P, can be written as a linear combination of the polynomials 1,z, 2%, ..., z".
T all PoluwWalS ,p Jaﬂm &n,
Le,(— P(ﬁ)’- Qo + AN + Ay x* ¥ - 2

SRR K- 2 &— RrLr‘"ﬁlﬁj Folaneum'ql tm R
o () + . () +a () o+ an(x).
(n\us P(:Q V5

in 9?&!/\?"7('1?'--.,“";_
M‘-\ére P“ = Spav\gl, X,ui,._-) 7("?_
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There are two important problems we can ask about spanning sets in a vector space.

e Given a set of vectors S and a vector ¥, decide whether ¥ is in span(5).

£ o O b welln as a

e Given a set of vectors S, decide whether span(S) =V.

Example 4. Let 4 = (1,2,—1) and ¥ = (6,4,2). oo "°"'\L‘\‘\“'L"°"‘ °p

V&‘Qﬁ A, S?
(a) Show that wy = (9,2,7) is a linear combination of  and v.

The e;tualn'om (q,z.") = k, (h,2,-) + kg (6,4,0) s utw‘\/alwi’ o Ha
“'V\La-r 3‘63‘1"’\: q = le, + bk, ) 2= 2.“1 "'"l‘t, 7= 'k, +Zl(z_

TL;; 5'1391'%« has Solul“""“ b, = -3, hy =
' A
Thas  ®= -32 v2v. (6 & 5w a2, di )
(b) Show that % = (4, —1,8) is not a linear combination of # and 7.
’n\-& %K“LN“ (Ll‘ ’l, 9) = k, (',Z.-) + h‘l( 61"1 2) 3 %“"vql‘“l- L" +L"
l“Nﬂr <vla9l‘QM B 4 = kl + ‘41' -1 = 21(‘ + L(“z, g: ’&| 4'24,__

TI«“S fl'yLw\ s "v\ConsrsLeJ- (J.e. no S'olu“'\»\s!”)' So ;:1 TS m,'—

. -
o \|\~o~r wmh‘u*-uh ,Q 2 au\p( 3 , (i.g_ {:',1 s w_n_" in Span i’u?, v i)
Example 5. Determine whether the vectors @ = (1,1,2), %2 = (1,0,1), and 93 = (2,1,3) span R3.

We need to decwle wheler  eversy vechor (b, bi,bs) W5 s span 3V, V35
(‘b!)bz)LDZ) - l(‘(','.'Z\ * kt("o' |> * L3 (2,"33 : (k' +k1*2k3'k“.k3l 2’(..+L2P3A3)

Thes s %W"“l‘"} o He Inear cssl-u.\'-

l¢-| + kl + Zk's ;Ll { ! z ke, b,
ke y t kg =bo => ' o '3 ke [ o] b
2, Fhy+ Zk; = by £ “ 3

- -

’Bec“m 0!2,4'[2" z-g = O (cL\ulL H«rﬂ”)) Hog 9'391'*“ r¢ tnconsrsbenl
Qr Sone  chores 09 lD, . L., , lo; . TLVLS Span ZV, , vl, 312 . M;‘_ \Zg
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Strategy. To determine.whether the set S = {1, ..., } spans the vector space V:

- choos an arlm‘\Ln»nj Veclor ?7 AN V
- Sd‘u‘o a "'war S’SSLM Q‘ow 3=

-
klbj‘ + - 4+ l‘rwr >
‘ -

- O{QJ-’AAQ wLLHu.r \-L., |(‘v\w gldetM 3 cOv\grSLA" -Qf gll \BT'N V
Example 6. Determine whether the set S spans Ps.
(@) S={1+z+2%—-1-x2+2z+z%}

Led P(x) = a+ bx+ et The %ML“W\

o + bx+exnt = b, (l ex+at) ¥ kl(—(—x\ ¥ k;(z +2a+ 7¢-z> is eiu:valu\j'

k‘ - [{z + Zt(; =
h-[ - l(-; + Zk3
e, v by

[ -1 2
T
| o |

Becanse = 0O, 'Hm.

n o 9

;.69(1«« s .‘utc,meSL-«l \Qr S’ou’a_\_.e CLon'ce,s ep
/'[\ULS S AOQX’——__V‘_\__DI’

a,b,c.

[ 4

$’Pow\ (‘72
(b) S ={z+2%2x-2%1+z,1—z}
Lot pCu)=a+‘ox+¢7¢1. The eq/yuu"v‘(w\.

o +bx +exnt = I, (x-«-x‘) + k,_(x—x')+ k;(“’?l) +kq (("7(.)
) Qq/w\ld[t.n" I'o Hq. It‘w S‘SSLM

k, l'l(q T O (2] o | { leq :
oty kg -l = b =) T R [ 2 e\
‘t' "kl c Pt ° e ke,

; o) - +bte
TL\L rl‘ep Qf‘ 'HAA‘S fldﬂ#tu.\ [3) IO |° Z o . fg,-c
e o 1 - i
T[\n‘s S coucicto\)' C.— ‘.L” ch‘cc,g op ab,c

4
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Example 7. Determine whether the set S spans Mas.
os-{BIRgLaL Y w AL2E]
BRI A R R RS IR R

a = k‘ l—le 4 lLs ¥ k,‘ ‘ | \ ’ k‘ - A

b o= by Hly N

==> z 3 k" = [4 o U ! ey .

c = ey * le, o o | hy h

d = b vk ¥l b e ][y :

Coroa

&cuuu 3 : 7; =-2¢0 P ‘Hm‘? 5'63104‘4 s cov\slsL_,\J'
( °

{
Q,._ 5&[ choices ,p a b, cd. 'n\u.s span {SZ z mzz-

o IR w2,

[: ‘ﬂ: k‘["’ - ”“ﬁ ¥ h,[‘; 3341“,[}" :_S

| I o
m‘ -Eecawsr. ‘ :; ? T ", =0 (21 ’£q> H'\FS . YSS"-«« s
° o o |
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Section 4.4 Linear Independence
Objectives.
o Define linear independence of vectors.
e Determine whether a set of vectors is linearly independent or linearly dependent.

e Define and apply the Wronskian to determine whether a set of functions is linearly independent.

Let V be a vector space. A nonempty set S = {@,%s,...,U,} of vectors in V is linearly independent if no
vector in S can be written as a linear combination of the other vectors in S. Otherwise, S is linearly dependent.

Note: If S = {¥} contains one vector, then S is linearly independent if 7 7 0 and linearly dependent if 7 = 0.

Theorem. A nonempty set S = {#, 7, ..., 3.} of vectors in V is linearly independent if and only if the only
solution to the equation

k1171+k2172+"'+kr77r=6

iski=ky=---=k-=0.
Example 1. The set {&,é3,...,€,} of standard unit vectors in R™ is linearly independent.
- - >
’gecauiﬁ k| e, +k1ez+"' + kneu = (kl|"1; ) k"‘) ; H‘\L 00\'3
ks b k2 ko= o - iz ©
Solutow &y k- + wein = O 'S l(‘ =0, ’L-L’o,"‘, w® >

(H:\WS gz,, SN Z,\E Y ‘\w“ \‘v\wl in |2n

Example 2. Determine whether the vectors 1 = (1,-2,3), U2 = (5,6,—1), U3 = (3,2,1) are linearly

independent in R3.
- - -
WY+ BT kv = 0 2 L (143) rky(56,-1) +hy(3,2,1)= (0,0,0)

k, + Sk, *3ky =O

o el 2k 20 D laa-ib kit ket
Zk, —k'l "'IL“ -0
®\ v 5 3] =
or - -7 6 1 -%0.

—n\fS ;Bgl-tw has v\ou—'Ler‘a‘ Solu"ﬂ)ﬂs‘) 3 - |
So ?, '71’ j-s ae ,'wf(3 A;PW-L
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Example 3. Determine whether the vectors ¥ = (1,2,2, 1), 7 = (4,9,9, —4), 73 = (5,8,9,—5) are linearly
independent in R%,

LY, v Ve k% =8 = (6200 + k(6490 + ks (5,89,-5) = T

=-> ZQ, + ”Ucl + gks O ==> b‘l -;o, k‘l '_O' l(;"_o

LQ' + qkz + q l(s (o N_"
-k, -4 W, - S‘ks = O Gaussian d"wwl‘-v‘ov\.

(V\E_!'&" Cawvw" wnwe AQ}C{‘W\I'V\MJ‘) be canse oo
coefflront wabrin 5wk szuwc)

‘TLMS 7‘ —‘71 -\7: ore ‘s’W(S rv\da,';mally\i',

Example 4. The set {1,z,2%,...,2"} of polynomials in P, is linearly independent.

I‘P ao(‘\ + al(") ra, (7‘1)+"' *an <"K“) =0 ) Hu.n. Qo =4, = -~ ca,=0 .

’n\us gl,x,x’, Sty ‘)(“‘i ts |t‘\~eﬂtf(ns \‘nﬂ(apey\o&v\l' i R

Example 5. Determine whether the polynomials pi(z) = 1 — z, pa(z) =5+ 3z — 222, p3(z) = 1+ 3z — 2?
are linearly independent in P;.

L\ e ("‘) + h—‘t P2 ('d.) + k} Pg(x) =0 =) lv.‘ (‘- x) + kz(§ +%¢ "7.7:.‘) ¥ k;(l"';"'xz) =0,
ke, + Sk, + by =0 (Q‘Ou,‘ conthant ‘-crw.s)

::'> - [L, “'3’(7 + 3’(3 =0 (qu..\ Weor Hrw-q)
"21(1 - le =0 (C‘ﬂw\ WMAML\ Ms)

{ s |
‘geco-uu. -3 3 : 0 Has 963‘1_,,“ has  non-trivial Solutons .
o -2 - ’

Tlodbre, PO, P20, P Y e linancy  depudunt-



Math 251 Spring 2023

Theorem. Let S be a nonempty set of vectors in a vector space V.

(a) If 0 is in S then S is linearly dependent.

(b) If S contains exactly two vectors, then S is linearly independent if and only if neither vector is a scalar
multiple of the other.

. R=k?¥ & G are lweady olepedent.
~d L]

Example 6. Recall that F(—oo,00) is the set of all functions defined on (—o0,0).

(a) Show that the functions f(z) = x and g(z) = cosx are linearly independent in F(—00,00)

C(x) 'S Foa scalar W\M”‘“Ptﬁ "p 3("\ , So £ aund Q

are \‘\W"ﬁ Mollfu'\OQA* " F(—”o ;a’) -

(b) Show that the functions f(z) = sin2z and g(z) = sinz cos z are linearly dependent in F(—00,00)

-C(x\ = stnlx = 2 ghax cosn = 2 ﬂ(x)
&Cau-% p is a ¢ealar WW\H‘JP{L oo q, Ha Q/.y\c’-m“g .p
ad 4 we Imeady depdent W Fl-o0,m).

The second condition in the previous theorem can be interpreted — and extended — geometrically as follows.
e Two distinct nonzero vectors in R? or R3 are linearly dependent if and only if they are parallel — that is,
they lie on the same line.

e Three distinct nonzero vectors in R3 are linearly dependent if and only if they lie in the same plane.

2 A R" A 2 A

-
v

<y

S
v

)
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Theorem. Let S = {#,%s,...,7,} be a nonempty set of vectors yeesers in R™. If » > n then S is linearly
dependent.

’ﬂ\is S'ags “Aal— a |.~.,M,l(A ;ndxFey\oleI- S’Cl— tn IIZ“ Cov\‘"ams
ab most vectors.

QS. Z(O‘l\ ; (2,"‘3, (',Z\E is 'l‘lN.N’ﬁ dgfgp\db\" ta (Ez
Aoy + (2D ~2(1,3) = (0,0).

Our first methods of solving a linear system involved reduction of the coefficient matrix to (reduced) row
echelon form. The next example demonstrates a general principle about matrices in ref and rref:

TC an G«usme,v\l‘tdv mabx TS P&c (rreﬁ Hu He set orﬂ

nole *

nwonterv ows s

1 a2 a13 aue
Example 7. Let A= |0 0 1 ag|, and let 7 = (1,a12,a13,014), 72 = (0,0, 1,a24), 73 = (0,0,0,1).
0 O 0 1

Show that the equation ¢177 + coT2 + €373 = 0 has only the trivial solution ¢; = ¢2 = ¢3 = 0.

- g -
| = =
C,F, + Gy *Cgry =0 c,(l,a,z,a.;la,,,) +c,(o,o,(,au,)-pcs(o,o,o,l) = 0

C| O

= ca -

"‘) 1" = O = c, ':_0, Cz=0, Cz“o
Ciaz3 ¥ Cq =0

C\au‘ * C.la-u_‘ J-C" =0

‘TLM 't?, , Pz , F'? are "'Nar'n v‘b\w.
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Given functions fi(x), fo(x), ..., fo(z) that are differentiable n — 1 times on (—o00,00), the determinant
B! Ew; fx) - falz)
filz falm) - fal®) .
W(z) = 1: 2: : dficondale ! s

f"‘”(aa) fé"‘i)(x) e U

is the Wronskian of f1, fa,..., fa.

Theorem. If the Wronskian of the functions fi, fa,..., fn is 2°=t identically zero on (—oc,00), then the
functions are linearly independent.

note:  The  comverse iy ot bt
That s ;,C W6y = e Qr— all o, Huy\ Q'---,Cn ould ke

L4

eitlar  lowarly solepedant or el dlopemolunt-
Example 8. Show that f(z) = z and g(x) = cosz are linearly independent in C°°(—0o0, 00).
£ ) 3("\

WG = 0y ay|

w coSx

I -l T = Sine - CosSH |

Becanse WGy s V\,_o_“ tolmkcaNS zero (eg. \M(O)‘-—l))

.C (=) awd 3(u) ase |rm,|.3 smolepen s

Example 9. Show that fi(z) =1, fo(z) = €%, f3(z) = €7 are linearly independent in C*(—o0, 00).

2’ 2%
| e e o 2 n
- e e 3 2 T
W(ﬂ\) B 0 e™ Ze™ : e® hot™ : be - 2e = Ze
o e™ 4

T WO 15wt dubrally  zew (e w(e) 2 2)

‘H&. puuCl‘iDHS f Q:Cb are "W’iﬁ M.DIJPAOLU\J' tta C (—m,Cb).

i
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Section 4.5 Coordinates and Basis

Objectives.

e Introduce the idea of a basis for a vector space.

e Find coordinates for a vector relative to a given basis.

A vector space V is finite-dimensional if there is a finite set of vectors S that spans V. Otherwise, V is
infinite-dimensional.

Let S = {#,7,...,Tn} be a set of vectors in a finite-dimensional vector space V. We say that S is a basis
for V if the following two conditions hold.

e SspansV e, EU_Cfﬂ VuLUf n V i a L‘Mﬂf‘ comh‘v\a"lu\ 0‘0 leofs NS S

—’
e S is linearly independent  j.e, EC k.;?. + L,Vl yoor b l‘”‘\'}“ = 0 Hyn e, =ky=-ck,=0.

Example 1. The set|S = {€1, ¢, ...,€r} Is a basis for R®. | w "
P G Glfsabass r R ot ok by fr R

From  Examge 1, Sechm 63, R = span($).
Frow E)lm'okl’ Section b-q, S ((‘v\m"s !‘hAefﬁ\o(Ml'

TIMJ‘QQN' S s a bAﬂ‘S Q’r R“.

Example 2. The set|S = {1,z,22,...,z"}is a basis for P,. . .
a—— “slandorol bacn Pn P.‘

Fo Eoagle 3, Sabon &3, P = span(9),
F-v,“ Example 4, Sechion &-4, S |ﬂ-ear(.3 \u\p((fu‘plu\l-

(n\u-e(\'or(’ S S a basts Qr PV\ .
Example 3. The vector space Py is infinite-dimensional.

IC g={?':PH"':Pr§ is & 'BML 9/"' ‘p P”S“”"“"l‘, -l'LU\ ldmg cov\l'ﬂms

o=

a Fo[‘ymw‘a‘ oQ AKX ArA 0'-‘5'“ y SAY Azﬂrea n, Then any lncar  combinabion

A+l

oQ Polﬁucm‘sax has stru, at ms"' n. Tl""‘s we C“__;"_';"l' eXxpress X as &
\wear “Mbi‘v\ﬂhah ap FJSMM-‘a'S tn S', so S AOCJ M,' S'rawx Pm .

chl, Pm Ny -‘V\QMIL(’ d((‘mr\s'f'bm( .
1

nﬁ’ Flo,o) © alo bk - dwensional.
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Example 4. Show that the vectors & = (1,2,1), 2 = (2,9,0), @i = (3,3,4) form a basis for R,
o bnear Mdtpwdl-ncii . S"Ev\vu:g sl !
% c,?, + c,?, +C;v.‘ : o . Han L b - XA *Cg-‘?; =(LI,L1,53), Hon
¢ +2¢, +3¢y =0 C, +2¢cq + 3¢; = b,
2¢, +4¢, +3¢g =0 2¢, +9¢, + 3¢5 by
C, tbheg =0 - c, +bcy =bg .

0.oM
Lo W

I
&cans‘c AL"I:% ]:—-l#O, e L\omgy\ews s:js"zw\ has 45_.3'3
b bl sldion (3 T e Deady ovbpileb) ad f
v\ov\L\nw\,o%nm3 3 C,,hg.-g‘-m'- ,Qr a” vec\(org (’o,,bt,b;\d 1% m;.

Threloe, S $3,,9, V8§« bam e .

. 10 01 00 00 .
Example 5. Show that the matrices M; = [0 0], My = [O 0], Ms = [1 0]’ M, = [0 1] form a basis

for the vector space Mas.
. -l_ll\m,r indapendimnce ©
© o ¢, Cg © o
oMo Myre e, [° °] , Hhen [c, C«]=[° °].
T[«.us ¢, =0, €2 =0, ¢y 2-0, € =0' So MI’MNMS,MQ ase '\‘W,‘Q MML

. geav\m‘ne YJ'“ a b c, Ca a ‘b
TEQ C‘M.i' C,Mz{-c;M;‘-CqM = [c 41 H‘""‘ cy € "le d]-

4

’Fﬁk\‘v\s C, '—A' €2 =b- <y =¢, Cl' :d S'a.h}ﬂ!.’ H”” %Mkmﬂp Se mnml; M“,’”‘l
Spas M’L‘L .

TL'IQO""( S=3 M, M, Mﬂ s a oass B M.

4 “clondad  basrs for My
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Theorem. Let S = {#, %5, ..., U, } be a basis for the vector space V. Then every vector ¢ in V' can be written

as
17=6161+0252+---+Cn6n

in exactly one way.

Proof. (Bew,usc S 5 a basis Qr V, evasry veo"o" " V on wd“e"\ as  a
\ﬂ—u—or wmb fv\u‘hw\ oQ VLC‘orS P S .
S..PPQSL .\7=C“\7| "'C{\?z LR +c.\‘\7.‘ gt_r\_d v=d|3«+d1?1*"' "‘dv\.‘Z\
m 8 = (Cl—d|)?l + (C‘l'dz\vt""' t (C,‘.—d“) :7'\.
(&umw. S v IMM_N'S MAARKD“M"', wie l\ANQ Cl"dq"o, CZ‘AZ.:D, eE Cu-ol, = 0.
Thws ¢ =0, cy=dy, ==+, ¢, 2dn.
T, T U can be walen ot & leer cocbiabon off He bags C

(7N aneHﬂ one woaj .

The numbers ¢y, ¢s, . .., cpn in this theorem are called the coordinates of ¥ relative to the basis S. The vector
(c1,¢3,...,¢cn) is called the coordinate vector of ¥ relative to the basis 9, and is denoted by
(ﬁ)S = (617627 e ,Cn).

I'p S’g?, )vll'-‘) ?“i ’ +L"v\
7 = c\vl *’ctvt Yoo ¥ c'\vvx <=> (“7\5 = (c') Cz, --"C.‘) .

Example 6. Consider the standard basis S = {&, €2, €3} for R%. What is the coordinate vector for ¥ = (a, b, ¢)
relative to the basis S7

Vv =(ab,c)= ac, + be, + CZ-, , Se <.\.7)S = (a,‘:, ).

Example 7. Consider the basis § = {(1,0),(1,2)} for R2. What is the coordinate vector for ¥ = (—1,4)
relative to the basis S7

2(-1,68) = -3 (h0)+2(n2) , s (7)5=('3/1)~
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Example 8. Find the coordinate vector for the polynomial p(z) = ag + a1z + asx? + -+ + apx™ relative to

the standard basis for F,.
P("KB = a,,(!) + a, (=) + al(x‘h--- + a,.(-u") )

to (P(’A)S = (Go, a,’ QAq, - q“) )

bJ relative to the standard basis for Mas.

Example 9. Find the coordinate vector for the matrix A = [ d

NI I BN I CESRPTE)

o o

5o (ASS = (a, b, e, ol\.
Example 10. Recall from Example 4 that @) = (1,2,1), 02 = (2,9,0), ¥3 = (3, 3,4) form a basis for R3.

(a) Find the coordinate vector for 7 = (5, —1,9) relative to the basis S = {1, U, U3}.
F""W\ (S)"’q\) b C.(I"l, ') ¥ C (z‘q,o\ + Cz (?,3,‘4), we oH‘m‘u\

+ ZCI +?C3 =§

Cl
2¢, + e v+ 3¢ = -]
C, +4C3 = q

TLL folu“"ﬂn s
Tharefore, (W) = (1712,

(b) Find @ given that (@)s = (—1,3,2).
- g )
v+ gv’,_i—sz; - -\(I,Z,l)-r's(z,q,o)-f-2(3,3,44)

= (2 7).

—

A—
W = -
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Section 4.6 Dimension

Objectives.

e Define the dimension of a finite-dimensional vector space.

e Relate dimension to span and linear independence.

|Theorem. Every basis for a finite-dimensional vector space V' contains the same number of vectors.

The number of vectors in a basis for the finite-dimensional vector space V is called the dimension of V', and
is denoted by dim V.

/_\g_li.' ip \/zg_gz , ('Lu.y\ oll"w\\/ = 0,
Example 1. What is the dimension of each vector space?
= 2 -
(a) R Tle S(‘MMM bacry s ge,, €y, -, Qng .
Tl down (R =10,
(b) P, —n\._, y(.”\h,v( basty S E | R xﬂg '
Thas Adun (P“) t ntl,

d.‘w\(any T Mn. ey, [2 :9 ;] s n Ha  standast basrs
Gr M.

(c) Mpn

Theorem. Let V be a finite-dimensional vector space with dim V' = n.

1. If W is a subset of V that contains more than n vectors, then W is linearly dependent.

2. If W is a subset of V that contains fewer than n vectors, then W does not span V.

Example 2. Suppose that S = {#h,¥2,...,7,} is a linearly independent set of vectors in a vector space V.
What is dim (span(S))? Why?

S is l.‘y\culs -‘VJLP!MA“J’ R Mi( S SPO\v\s Tpan (S) . (n\ﬁ'S nA2ni g "L\a’l'
S he a baﬁ‘s Qr S‘Faw\ (g) , so A"M (S'fa»\ (S)) =1,
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Example 3. Consider the linear system below. (This is Example 5 from the Section 1.2 lecture notes.)

zq + 3z — 223 + 215 =0
221 + 639 — By — 224 + 425 — 316 =0
5xg + 10x4 + 15z =0

221 + 6x9 4+ 8z4 +4z5 + 182 =0

The general solution to this system is

T =-3r—4s—2t, xy=7r, =x3=—28, T4=5, x5=1, Te=0.

(a) Write the solution in vector form.

K = (-3c-4s-2¢, 7, =25 s, ¢, 0)

C (-3, 1,0,0,0 o) + s(-a,o,-'z,\,o,o)+ é(—z‘o,o,o,“o)_

LY ) Ve
(b) Find a basis for the solution space of the system.

EV% \IQ.CI'OP —72 A H‘L S‘oleOu\ SFACQ. is a lvear c0le'ML10K OQ
(—'S,l,o,o,o,o\, (-4.0,-2,1,0,0) ('Z,D, ",’,',o) , and  Hese vachors
ofe \w\.ear(.j mofgpvvb.nL (n\ws E C—;,t,o,o, 0,03' C-Q'O’—-‘L,l’ o,o), (—z,o,o, o',.ojf

. basis - He solubrow space.

S a

(c) What is the dimension of the solution space?

T[Au-e, ot Hree vecl'w‘s . any ba‘-‘"‘, So Hao Space

hot  Amaenglon 3 |
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anion” (e addk ¥ o He =FS).
— /
Theorem. Let S be a set of vectors in a vector space V. /

1. If S is linearly independent, and @ is not in span(S), then S U {4} is linearly independent.
.e. G.Mhs“\lec"’f OMI‘M S'PGV\(S) does Mt c,!‘ ll'vx(‘“r \‘HAIPMM .
2. [f #isin S, and ¥ can be written as a (nonzero) linear combination of other vectors in .S, then

ve V . S i
span(S) = span(S — {¢'}). reene v

ie. rew\o\ﬁv\g ‘l-wl3 JLP..A';J' w_c_"ors does gg_"‘ amz\L S’Pav\(S').

Example 4. Explain why the polynomials p(z) = 1+ 3%, q(z) =2+ x2, r(z) = z* are linearly independent.
() and 1(:&) are lz’mar'3 -\aallptwlha’ (MJu-ur Yo Mn”‘i‘p(l &0 Hee ol’Lw.r).
Ao, > s wob N span $ p0o), 309 | bcause = 5 cubr  bat p,q are

%u\ndmk‘c . ’n\us {Pfx.\,i(z\.r(x); T lw3 WW(‘FMA'J‘

Theorem. Let V be a vector space with dim V = n, and let S be a set of n vectors in V.
had) —r
%wa”.’!

1. S is a basis for V if and only if S is linearly independent.

2. Sis a basis for V if and only if S spans V.

Example 5. Explain why each set of vectors is a basis for the given vector space.
(a) @ = (1,4) and @ = (3,—2) in R

V. ok Vo e agh tmendy  olepodod, and don(RY)- 2.
'Tku zv:,vzi s o Lasrs Q,.— mz.

(b) % = (1,0,2), % = (—1,0,1), and 73 = (2,—2,3) in R®

'\7( ondk 71 are kw"ﬁ -\J{‘amp(ml- in He x%»P(o.v\e.,

becam s Hae ca—coﬂd. 'S io
-
Reause ¥z 5 meb in e we-pane (ve Py 0 oweb o span 19,%8)
)

He st Z?“?,"\?;S is "'“““"‘3 .».A:.,w«i-q}
Mo, down (R 23 50 52008 is o b L B

? '
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Theorem. Let V be a vector space with dimV = n, and let S be a set of vectors in V.

1. If S spans V but is not a basis for V, then S can be reduced to a basis for V' by removing some vectors.

2. If S is linearly independent but is not a basis for V, then .S can be enlarged to a basis for V' by adding
some vectors.

Example 6. (a) Find a subset of S = {(1,—1),(~1,1),(1,1)} that is a basis for R?,

&M(‘Rz)-.z, So we weed oo veekors th S b QM“ basts
'ﬂ.n, vw(‘ers ('.") and C‘:') are I"qulj Mﬁl-('uy\o(mt

'n\u\s Z(l,—l)'(l”)} s a basts Qr "Zt
wer FCu0, 00 5 ke e bes e Y bud
S0, CUE 5wk a b for 2 (why?)

(b) Enlarge the set § = {(1,1,0),(1,0,—1)} to a basis for R®.
Lo¥s L"‘B QM\AS (1,0,0) b S.
k, (1, ,0) + ky(t0,-1) ¢ k;(',o,o) = (0,0,0)
= (kyvky thg b, -lky) = (9,90)
=k =l =ky =0
s Z((,1,0)'((,o,—l),((,o,O)g s ety w(zpodm} ond  conbnrng
Wee vechrs, 3o Hus ©oa bess for 127
".‘L‘i {('.'.0),0,0,-'),(o,l,o)§ and  §(1,1,0), (1,0,-0), (00, ) ase alie bass { IIZ?,

Theorem. If W is a subspace of a finite-dimensional vector space V/, then:

1. W is finite-dimensional.
2. dimW <dimV.

3. W=V ifand only if dimW =dimV.
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Section 4.7 Change of Basis
Objectives.
o Introduce the ‘change of basis problem’.
e Define the transition matrix for a change of basis.

e Find the transition matrix for a change of basis.

Let B = {v1,...,Un} be a basis for a vector space V, and let ¥ be a vector in V. Recall the definition of the
coordinate vector for ¥ relative to B: .
1
- - - - o4 €2
Vvt v, oe + Ca Vi <=> [V]E :(CHCI,"',C-«.\ : :
Cn

The set of all such coordinate vectors for V is a function from V' to R™ called the coordinate map relative to B.

e, for ench veelor ¥ V  ad exch buns B "2’" V, Hee s a
ewordomale  vecher [‘3}‘8 in IR“.

Sometimes we may want to change from one basis B for V' to a different basis B’. Thus we would like to
know how [0 and [] 5, are related.

Suppose that B = {iy, iz} and B’ = {if}, i3} are both bases for V, and that ¥ is a vector in V.

Lk [ [C] [l [4] , ek [V] - [t]

ﬂw.v\: —U?-, T a_-(z" + bdz, and 71 = C :.' + ’(:z, , S
-\-I’ s k| ?‘u + k,”uz = L| (au,' + 5:’;) ¥ k-‘ (Ct-zll + alaz’) s (L,a+kzc :.'-i- (k‘L +k10{> :,’
N P B R R R
: v = = N \)
“ B’ e b + k4 b A k b d g -

-‘-rmg,*l-uo\ m“n‘)& ‘C'UM 'E to BI

Paos = 21, [21,]
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Ehange of Basis Problem. Suppose that B = {iy,s,...,4,} is the old basis for V, and B’ =
{a@,, @, ..., i@,} is the new basis for V. Then the coordinate vectors for a vector ¢ in V satisfy

[1713/ = Pp_.p [ﬂB

where Pp_,p = [[l1]p [fa]p -+ [dn]g/] is the transition matrix from B to B’.

The columns of the transition matrix are the coordinate vectors of the old basis relative to the new basis.

Example 1. Consider the bases B = {(1,0),(0,1)} and B’ = {(1,1),(1,2)} for R2.

(a) Find the transition matrix Pp_,p from B to B'.

R, (0= 20,0 -(1,2) = 2w “’ 7 ‘U'{z’ | e [-uz.],s,

) "
| pm— 1

' - n
= - ——l
—

A = (00 Y= () + (y,2) = W E Ry, % [:zjg’

- - Z -
—n\ns" P‘B—-ns' = [[“'3\3' “‘]B’] c 0 \

(b) Find the transition matrix Pgr_,p from B’ to B. [ ]

((,\3: ((o\+(0|) ‘+;>l % [.»

O LR ET- S N I I

S ]

?z'—»s

(c) Suppose that [v]5 = [_42} Find [7] 5.

[7]1;' = Ve [—‘7113 : -21 "‘ _“l] : -:71_
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Applying a change of basis from B to B’ and then a change of basis from B’ to B leaves coordinate vectors
unchanged.

.e. ['\713 = P‘B'a..B [vlar = P.g:_,ﬁ (P's-n;' [¢13>
- (PB’—YB ‘PB-"B’) [-‘ng = I [VIB >

So P'B'—-)‘B ’P«B_,B' = x .

This means that the transition matrices Pg_, 5r and Pp/_, g are inverses of each other.

Theorem. If P is the transition matrix from a basis B to a basis B’ in the vector space V, then P is invertible
and P! is the transition matrix from B’ to B.

We can find a transition matrix by row-reducing the matrix that has the vectors from each basis as columns.

w © Ll"\s
[«’1.’ -‘:l’l R Wa oo S l: L I p‘B-—-‘:ﬁ']
PN X
b 4 b 2,
New asis ° asd§ , l ]

Example 2. Find the transition matrix Pg_, g/ for the bases in Example 1.

| o llllO] [lOIz-l

Y -1
—n/\u.s Pg__,.sr = [_‘ |I )

Theorem. Let B = {iy, s, ..., Un} be any basis for R™ and let S = {€1,én,...,€En} be the standard basis
for R™. Then the transition matrix from B to S is

l [
I 2

Pp_,5 = [h|i| - |i] -

In particular, if A = [#|%2] - |U,] is an invertible matrix, then A is a transition matrix from the basis
B = {#,%,...,U,} for R™ to the standard basis for R".

3
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Section 4.8 Row Space, Column Space, Null Space
Objectives.
e Introduce the row space, column space, and null space for a matrix.
e Study how solutions to homogeneous and nonhomogeneous systems are related.

e Find a basis and the dimension of the row space, column space, and null space.

Given an m x n matrix A, we an define three natural subspaces of Euclidean space.

e the row space of A is the set of all linear combinations of the row vectors of A

Question: /s the row space of A a subspace of R™ or o

-~ fow Ue.c‘l'brs in A L\owe, 'ey\a“/\ n.

e the column space of A is the set of all linear combinations of the column vectors of A

Question: Is the column space of A a subspace or of R*?

- colwmn vechrs in A haw  lenglh m.
e the null space of A is the set of all solutions to the equation AZ = 0
Question: /s the null space of A a subspace of R™ or

- if AR s defmed, Hen R has lagih n.
2 1 ¢“3
Example 1. Let A= |4 —1|.
1 3

2
(a) The set row(A) (the row space of A) is a subspace of iR .

(b) Name one vector in row(A). [2 |] (". [[, -l], [l 3] ) [6 O]

3
(¢) The set col(A) (the column space of A) is a subspace of R .

1 ! 4 -1
(d) Name one vector in col(A). l-: (“ ['?: s ?-l , [_'3] , e )

1
(e) The set null(A) (the null space of A) is a subspace of lR .

)

(f) Name one vector in null(4). [g] (-Ho\ts is  the °L‘.‘3 vec(or n nu" (A\ \ _
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Example 2. Consider the matrix A = [(1) ? _11]

(a) Is (2,—2,2) in row(A)? Eg_
‘.‘c k' (‘,O,"‘) ¥ kﬂ(o"' l) - (2"2'1) ’ ‘HMU\ k—( =2 and kt"‘z, bu"
2(1,0-) + () (0,,1) = (2,72, 0) # (2,-3,2).
(b) What is a basis for row(A)?
S: g(':o"'), (O,l‘ ')? .

l He dimension i H!. VIMM op
\DQC('OI‘S ™ a bo s .

(c) What is the dimension of row(A)?

A“W\ (md (A’\) - 2 .
(d) Is (4,2) in col(A)? l’_e_,_s .

o[o]ea[e] o [V] - [].

(e) What is a basis for col(A)?

(g) Is (2,-2,2) in null(A)? Ze—;

(h) What is a basis for null(A)?
S ) ! V\_fle" €Wﬂ$ WCLF i m"(A\ s a
] mulhp(e af [J[I
ol

(i) What is the dimension of null(4)?

diun (ﬂu\u (AW =|.
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The column space of a matrix can also be described as the set of all vectors b in R™ for which the equation
AZ = b has a solution.

Theorem. The equation AZ = b is consistent if and only if b is in the column space of A.

Example 3. Consider the linear system AZ = 5, where

1 -2 2 -3
A=[-1 3 1 and b= |-2
2 2 1 8

Show that b is in the column space of A.

-3
2 2 4 o 1% o 0 .21 ;i]
-2 2 -3 I -2 o )
Il o
— o 1 3 {—s s lo v o v |l— 1o | ° 'f
(o] [+ ] | -% fe) [o)] { -2 o o l - ]

| -2 2 -3
Thus 3l-t [+ 3 ]-2 ]t |{=]"-2

2 2 | 6

Example 4. Suppose that j, is a solution of the homogeneous system AZ = 0, and :vo is a solution of the
nonhomogeneous system AZ = b. Show that Zo + ki), is a solution of the system AZ = b for all scalars k.

;zo"‘f and A;zk:-g, seo
Q(i’o\» k;’.k)z Ax, + A(l«.??,‘):—g v k(AT},‘) v k@) =T

The importance of the last example is the following principle:

The general solution for a consistent linear system is the sum of a particular solution for the linear
system and the general solution for the corresponding homogeneous linear system.

Theorem. Every solution Z for a consistent linear system AZ = b can be written in the form
Z=Fy+ 1t + cot + -+ + ¢ Uy,

where , is any solution for AZ = b and {1, U2, ..., U} is a basis for the null space of A.
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Finding a basis for the row space or column space of a matrix.

Recall that two matrices are row equivalent if each can be obtained from the other through elementary row
operations.

Theorem.

1. If A and B are row equivalent, then row(A) = row(B).

2. If A and B are row equivalent, then null(4) = null(B).

For a matrix A in row-echelon form (such as in Example 2), identifying a basis for row(A) or col(4) is
particularly easy — the row vectors containing a leading 1 form a basis for row(A), and the column vectors
containing a leading 1 form a basis for col(4).

1 -3 0 4 -1

. . . . 0 1 2 -2 O

Example 5. Find a basis for row(B) and a basis for col(B) given that B = 00 0 1 1
0 0 0 0 O

Lasis Qr row ('3)7 S= {(l,—zlo,(,l—ﬂ’ (o) |'2|-'z,o)' (olo, o1, ')z .

basts  for cel(ﬂ: S = : i _‘;
o ) o |, \
[+ o (o)

o2 -t 3 t 2 -t 3 o2 -1 3 {2 -1 3
2 § o 3| — o 1 2 -3 — ] | 2 -3 |=>]o 72 -3
o t -1 1 o 1 -1 1 o o -3 4 o o | .y
- | .

S - {(l,z,-l,;), (o,!,z,-g), (o,o, L-45)S s o bass e reu(A)
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The next theorem allows us to find a basis for col(A) — more specifically, a basis for col(A) that consists
entirely of columns of A.

Theorem. Suppose that A and B are row equivalent.

1. If a set of columns of A are linearly independent, then the corresponding columns of B are also linearly
independent.

2. If a set of columns of A are a basis for col(A), then the corresponding columns of B are a basis for col(B).

1 1 -2 1 4
Example 7. Consider the matrix A= (3 2 -1 0 2 |.
0 -1 5 -3 -2

(a) Find a matrix B in row-echelon form that is row equivalent to A.

i v -1 v 4 T A B
2 2 -1 o 2| —/m})e -1t s -3 -l

o - S -3 - o - s -3 -2

[ | { -1 { 4
—_— | 0 i § -1  -lo
LO o ) (o] 8
1« 2 i 4
~—> | 0 l —s 3 12)
o [

(b) Identify a basis for col(B) in part (a). //
cvfwv\ns op € 'uwd' CM"“"’\

S: [Ll {: ‘° o “IMV\S i” Qrm a LAS«S
o ' 0 ) I ) er col (.B)

(c) Use the theorem above to identify a basis for col(A) that consists entirely of columns of A.
*  becomse co[uwms L2,S are a basis Qr‘ col (E), ‘Hﬂt coﬂ’ecpo»\o!t\\S columnsg
of A ae a bas for ol(A).

s )[4

(d) What is the dimension of col(A)?
5
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Suppose that we want to find a basis for row(A) that consists entirely of rows of A. One way to do this is to
apply the method from the previous page to the matrix AT. This gives a basis for col(AT) that consists of

columns of AT — transposing this basis gives a basis for row(A) that consists of rows of A.

1 1 -2 1 4
Example 8. Consider the matrix A= (3 2 -1 0 2 | from Example 7.
0 -1 5 -3 -2

(a) Find a basis for col(A”) that consists entirely of columns of AT,

Lo [ © 3 o] (v 3 o]
oz - ° -1 6 |\ |
=2 - s —_— o S § | — | 0o ¢ s
o -3 o -3 -3 o -3 -3
| 4 2 | 0 -0 -2 | Lo -0 -2

1 1 o] [ 1 3 o]

o I 1 o 1 |

—— 0 o © — 6 o |

] o o 0 o

| o © 3 | 0 0 o

’Beco.wse_ a,“ “vee c,o(uw\vxg of '“'\L rco(u.teol W\a"ﬁx conl-am

a (@wb‘hﬂ i)

o vl ol e s o AT n a b B esl(AT).

{ 3 o
! 2 -1
5= ol P M s
| o -3
4L 2 -2 *

(b) Find a basis for row(A) that consists entirely of rows of A.

S=§ (L1200, (5.2,1,0, (0,1, 5,-3,2)§ |

(c) What is the dimension of row(A)?

dion (o)) = 3.

6
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Section 4.9 Rank, Nullity, and the Fundamental Matrix Spaces
Objectives.
e Define the rank and nullity of a matrix, and see how these are related.
e Introduce the orthogonal complement of a subspace.

e Extend the Equivalence Theorem.

Recall the following definitions from Section 4.8.

e the row space of A is the set of all linear combinations of the row vectors of A

e the column space of A is the set of all linear combinations of the column vectors of A

e the null space of A is the set of all solutions to the equation AZ = 0

The dimensions of these three spaces are related, and depend on the number of “leading variables” and “free
variables” in a linear system.

Theorem. The row space and column space of a matrix A have the same dimension.

The common dimension of the row space and the column space of A is called the rank of A. The dimension
of the null space of a matrix A is called the nullity of A.

0
Example 1. What is the rank of A = 1|? What is the nullity of A?
1

o o=

50,0),00% is o bass Re mold) | o cuk(B)=2.

(als,, f(éxrf?lg % a bass C,r col(AS >
The g_u‘s vechor i "“‘“(A\ s [g] , So M"u"-\a(ﬂ * 0.
i-e. nm“(A\ S He zuv'duLor Space.

Theorem. If A is an m x n matrix, then rank(A) + nullity(4) = h.
)

v\uwhbtl J’) m‘“”“'
We can also relate the rank and nullity of a matrix with the number of leading variables and the number of
free variables in a homogeneous linear system.

Theorem. Let A be an m x n matrix. Then rank(A) is the number of leading variables in the general solution
to AZ = 0, and nullity(A) is the number of free variables in the general solution to AZ = 0.
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Example 2. The matrices A, B, and C below are row equivalent.

112 -1 0 1 2 -10 10 (3]0
121 0 2 0@ -1 1 2 01 0
242 1 5 > 00 0 D1 — 0 0 |0 1
103 -2 -2 rof 00 0 0 0f rref 00 o] 0

(a) Find a basis for row(A).
s row (A) = er(‘s\f- ro:,u(c) becausge A,K,C are  (ow aiu.\b‘@t‘“.

bassis Qr rM(A): g(l‘l,zl—|‘0>'(o’|',|' |'z\' (0,001, |\§ ,

(b) Find a basis for col(A).

\
K R
basis e col(B) = { %], é],[i]i 5o v Mw:';f’;{‘“ﬂ

clawans
basis  for col(A)=fr ],néj(,[—%]i.
h | o -2

(c) What is the rank of A?

ol () = 3

(d) Find a basis for null(A).
—,
QSAQ 4‘0 A;Z:D s 7(%=S,7(s- =€ , 7(‘2—35, 7(1?-9'6, xqz’é,

= ("35, st 54, (:) - s(_g':,l,o,o} ¥ {:(o)-!,o,-t,l),

PR S P

becaunse .- a(c‘w\(rvw(-A\) =3 of dina (@l(.A\) =3
LA A s 3 lmolt'«g vamu\»[es.

or

bos B () = § (-5.0,0,0,0), (071,024 08

(e) What is the nullity of A? Q«
because ... A\‘M(V\“'I(ﬂ\) 22 or A by 2
nu“t‘lﬁ (/0 =7

voriables of n -~ rav\lt(A) = §-%=2

2
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If W is a subspace of R™, then the set of all vectors in R that are orthogonal to every vector in W is called
the orthogonal complement of W, and is denoted by Wt «— © W i

Example 3. Let W = span{(1,2)}, which is a subspace of R2.

(a) Find a vector in W+, ?L = (2,"3 . A /Lw
(WLS? io ‘\-I’ it , H\Lv\ 7’ k('f‘)‘(k.zl‘\. . 4
Thas  (2,-0)« (l,24) = 2k-2k = ©.) R WAMCD

(b) Describe the set of all vectors in W=, - >
1 /' W= (1,— l)
W cou!m‘ns g._(_‘_ \_/chor Pmllef to (2,—0 . ”/ M \\/, W—L

(w';\.s? (21,—1) . (k,zk) : 2kl-2Ul =0 . )

A:}_e_* ZB% s Hae ork,\%w( Com‘,[en,gyl‘l» o;—\ "Zz . .]\21.

Theorem. If W is a subspace of R", then:

1. W+ is a subspace of R".
2. The only vector in both W and W is 0.

3. The orthogonal complement of W+ is W.

Example 4. (a) What is the orthogonal complement of a line through the origin in R3?
(i.e. l'LL P(Avu. JLV\" 7§ or ngpvud

L, AKB uQOLOf' on {'L\-l. l"%) 'Pl"“"

(b) What is the orthogonal complement of a plane through the origin in R3?
a \_":L H\rou.sl\ Ha orfsM . \\//

(.‘.e. He (o H\A" 'S or-uuam, kwe

"-o au3 vQc('Or on He P(a*\!.)

w
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Recall that if £, is a solution to the homogeneous linear system AZ = 0, then Z, is orthogonal to every row
of A. Thatis, £}, - 7; = 0 where 7} is the ith row of A.

Theorem. If A is an m X n matrix, then:

1. The null space of A and the row space of A are orthogonal complements in R™.

2. The null space of AT and the column space of A are orthogonal complements in R™.

Example 5. Let & be a solution to the homogeneous linear system AT = 0, and let 7 be a vector in the row
space of A. Show that &}, is orthogonal to 7.

(gecau% —l'? s In ‘le.. oL S'PaCQ Op A, we

Con wi LQ

- = ~
CiFy + G0, +--0 + CT

¢ i Hv_ iH" row ep A

- - - - -
W' r© ' | &y F G =0 +C (M

7—2h- (C.?.) + :’h-(c,?,_) .-+ ;Zk-(cm;-?m\)

- = - 2
2 C Xnr Oy v G Ky sy ke b Q% Mo

1"

e, (o) + c,(0) +--- + e (0)

1]

O .

—TLA+ is, ;Zk is orH,\oa,om( {'o -:'

n_o_(v_c”‘- Thes proves Farl‘ (") oﬁ He Huoren abeve, becawer
we l«avl 9L\.owv~ H/\A,’ a-\ﬂ VQC-LOI‘ T v\u” (/4) s
°’H“8°M, fo aus vee bor fa o (A)
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We finally have all the ingredients to state the “Equivalence Theorem™ in full.

Equivalence Theorem. If A is an n x n matrix with no repeated rows or repeated columns, then the following

1.

statements are equivalent.

A is invertible.

A% = 0 has only the trivial solution.

The reduced row echelon form of A is I,.

A can be written as a product of elementary matrices.
A% = b is consistent for every n x 1 vector b.

AZ = b has exactly one solution for every n x 1 vector b.

det A # 0.

The column vectors of A are linearly independent.
The row vectors of A are linearly independent.

The column vectors of A span R™.

. The row vectors of A span R™.
. The column vectors of A are a basis for R™.
. The row vectors of A are a basis for R™.

. rank(A4) = n.

nullity(A) = 0.

. The orthogonal complement of null(4) is R™.

. The orthogonal complement of row(A4) is {0}.
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Section 5.1 Eigenvalues and Eigenvectors

& ” — - o
Objectives. eigen = Own

e Introduce eigenvalues and eigenvectors for a matrix or matrix transformation.

o Find eigenvalues, eigenvectors, and eigenspaces.

Suppose that Z is a non-zero vector and A is a square matrix. If AT = AZ for some scalar A, then A is an
eigenvalue of A and £ is an eigenvector of A corresponding to A.

Example 1. Let A = [é 2] Compute A [ ] A B] and A [ﬂ Which of these vectors is an eigenvector

of A? What are the eigenvalues?

A L_c.)] = [; lz][;] [;]l[;] e, A=l
Tm an w(w of A i enonvalue A1,

Al [oz}[] [ c1[1] e an2

'ﬂ/wu. [l} D an w‘aa«vec,'or op A with efamv:a,w. A2,
a7 L) Ll #of
Ttw [ 7-3 S wnef ," G eraeuvecl-or ,p A.

Loosely speaking, an eigenvector of an n x n matrix A (or of the matrix operator Ty4) is a direction in R” that
is unchanged when multiplying by A. That is, & # 0 is an eigenvector of A if ¥ and AZ are parallel.

S
Ax s -
X 2z

L

AR Az

=0

;q(. is onm W(‘f ? s an gﬂqywu,"a/ w 15 V\_g!’ an u%mw.clw

ep A wv‘n\ avl, op wibh -1< %<0, °p- A
(‘olc A‘i#’:\;)
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|

= 0.

LTheorem. If A is a square matrix, then X is an eigenvalue of A if and orﬁy/if det (A — A)

Proof. S'q(,posc A iIS  aw e,;am\p.,w. op A .n/\l-v\ H—q.re S A wonzers veclor ;?

suh  Hat AR 4R, Tt &, AR 2IR | s
B=4IR-4A2 = (2T-A) X . Tha Lb(AT-4)=0.

Su.PPOSZ, O(L+(4\I'A) = 0. Tl'w\ Hm.re_ % o wnwontereo vcc{w —;Z’ sweld

= -3
Thas  ATX-AR -5 o

Lot (aT-4)32 -3,
A;Z'-"’)‘I;z =’>‘;? Mr&, A D anm e.(aevwa.‘w, op A

11
0 2|

Example 2. Use the theorem above to find the eigenvalues of A = [

NI-4 = V; :] - [l ;] : [Qoﬁl A-lz]. ct\ﬁ'“;""ija“ml L4,

a(rr-4) = ket [2 L] (e loe) - (06) <G (a-n),

Aot (AT-A)=0:
(’A-‘\(A—l) L ) = A=l,72.

TL,, ﬁlawVaL«wS og A s A=l ad 4=T.

« seolve

Strategy. To find the eigenvalues of A:

_ %‘— “p Hn. M‘tﬂ'f'-vc %W’%"/F'{JW’M‘J &Q A
- :EW’Q al( {'L‘ glML\O'\S' .pH« Mﬂm‘st’u %wlth.

2
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A O ©° \' 7z o
120 o > o 1% | 7 S
Example 3. Find the eigenvalues of A = [3 1 2]. o 0 A °© 3
0 3 1 /

M (3T-4) = gt | 2 A =(A-'\((ﬁ-'3’—6>'('z)((‘”(“"))
°© -3 A-)
- ('A'\) ((a—\)"—é-éy: (A—l) (4\2—2’1 -10).
O
CMCLUNL‘Q P.lav\pm’a‘.

W (TR 0 D s e Avnl o< g
t Ja+44
o e ZEE L@ L

2z

((L\n, c%emva,ues are A=l A=+ ZE, A= [-2J3.

The eigenvalues of a triangular matrix can be found ‘by inspection’ (that is, without solving the characteristic
polynomial).

Theorem. If A is triangular, then the eigenvalues of A are the entries on the main diagonal. J

Example 4. Find the eigenvalues of each matrix.

B a 00 0
0 b 00
0 5]
0 0 ¢ O
00 @ 000 d
1137'7r ‘( 4__a'b’c.d.
dak (A -A)
3 -4 4
= det [4\0 A+ "r_g
(o3 o M

"
Tabun
x>
w
~—
Vet
>
+
~d
~
T~
>
\
L
~/
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Theorem. If A is a square matrix, then the following statements are equivalent.

1. Xis an eigenvalue of A.
2. X is a solution of the characteristic equation det (A] — A) = 0.

3. The system (A — A)Z = 0 has nontrivial solutions.

4. There is a nonzero vector Z such that AZ = A\T.

Now that we know how to find eigenvalues for a matrix, we turn our attention to finding the eigenvectors
corresponding to each eigenvalue. If \ is an eigenvalue of A, then the eigenvectors corresponding to A are the
nonzero vectors & such that (A\] — A)Z = 0. This solution space is the eigenspace corresponding to A.

Qw( o.” e«‘auwalw 60 A

- So'Ue_ (AT.—A)')? = 6’ Qr each e/nga'u_ X.

Example 5. Find the eigenspaces of the matrix A = [_21 g}

ole}r(/z\‘r A) ,t,}[M' ::] z (AHM -6 = At+A-6= (/,\ +3)(¢\—z),

T e.%mvalu&s op A are  A=T5, A=z
A=2

Avl =31 % | 3 -3 X : o]
g Al -2 2% 0
W .
{: o, —é. Wsie e,‘wwfm 30~ l‘o Sal\ll

TL\\AS ?[] a ‘aasrs Qr ‘H-w. ei‘a(’MS‘Faca corfte rpouolms

Az-3t Al -3 |1 % sk I T I
-7 A Az ) -2 -3 L3} o

bo A=Z.

-3
ﬂu\ Z( rlg s a basis ar HA. .C-B,Q\S'Pt-\ce Mcsfam(f-\s ’-o 4\'2"?.
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Qelor

o e‘P"""’”w"

Example 6. Find the eigenspaces of‘Lthe matrix A =

) o 2
A&(’AI—A\ = M(—t A-1 -l ]

-1 0 -3

Tha ggmualm of A e 4

|

0 0 -2
1 2 1.
1 0 3
- z,\‘f-S’A’»LS”,\ -4 = (4-’)(')- 2)2.
Sl and AL reeskd ogonvalue.

A=[: | o 2 x, o
— -l - =t % | =] o = x,=-25, A;= S, 2 =S,

-1 o - A ©
ﬂ@ ‘w- a‘acuuee'vs Qr 'A';'
bass e Hur egaaspace.

A=l CORRSEEC B ©
-1 o -t|| % ¢

-t
T u‘%emlac(ws C,,. Azl are [ S]:

e [T BT
:-") x‘z-{;,xz=g)x,=6

(1] e[3] =

t

5[‘][:12 5 oa bws B He o emuspace

Theorem. The square matrix A is invertible if and only if A = 0 is not an eigenvalue of A. J

Example 7. Find the eigenvalues of A = [é _03]

AA(M—A\ = A&[/A;' ;}

. (AN Ak, = As00 are Hy

esyemvalies of A The A i wot e bible
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Section 5.2 Diagonalization

Objectives.

e Define similarity transformations and identify some properties of similar matrices.

e Introduce the idea of diagonalizing a matrix.

o Use diagonalization to compute powers of a matrix efficiently.

Let A and P be n x n matrices with P invertible. The transformation that sends A to the matrix product
P71 AP is called a similarity transformation.

More generally, if A and B are n X n matrices then we say that B_is similar to A if there is an invertible matrix
P such that B = P~1AP.

Example 1. Suppose that B is similar to A. Show that A is similar to B.  aabex

Beeanse B 0 snler b A Huo s an tverhble P sl Haot BP AP
The. P8P = P(P AR) P - (pr)A(PP") - TRT = A
Tat 15 A= Q'BR whe Q=P Thas A 55 swdar b B.

(Notice that the previous example allows us to say that A and B are similar if one is similar to the other.)

Similar matrices share several important properties. In particular, if A and B are similar then A and B have
the same ...

J.ﬂ,(’!ﬂh"v\a“\" B rav\h, nu\u(‘l\j , -l-(‘amg’ cb\amokn‘shc. Pol‘y\omia‘ 5 efamvalues y oo

r'QP'QSU\ ,' H\L AL ll\AAAr Lm»gﬂrw\a ,‘Nu

v\.o‘-c. E s‘rw\ilar W Lr-‘ces

willy rz;pul— fo A”mrcu" boses.

Example 2. Suppose that A and B are similar matrices. Show that det (A) = det (B).

Becnust A andd B are sudar, Hwe v an nvertible wabix P
sk Wt EB: P AP,

det (B) = AA(P"A P) = deb (") deb(A) et ()
S A deh(PD = dek(A).

1

- dd-(
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An n x n matrix A is diagonalizable if it is similar to a diagonal matrix. That is, if there is an invertible matrix
P such that P~1AP is diagonal, in which case we say that P diagonalizes A.

Example 3. Consider the 2 x 2 matrices A = [g _31} and P = E ;J

(a) Show that P diagonalizes A.

TS e N S R
ST L0 0 [ R e P A
Thus P ol diagonalizes 4.

(b) What are the eigenvalues of A?

P"AF has  egenvalues 4=4,5, o A also las ct‘alMa(uu A=6,S.

"

The key ingredient for diagonalizing a matrix is the set of eigenvectors of the matrix.

Theorem. An n x n matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

Theorem. If A\, \s, ..., A, are distinct eigenvalues of a matrix A, and ¥, 2, ..., U are corresponding eigen-
vectors, then the set {¥,¥s, ..., U} is linearly independent.

It follows from the previous two theorems that an n x n matrix with n distinct eigenvalues is diagonalizable.

N‘mﬁ? ead« an%unualML corrqpano(s "-u (o«l" ‘QﬁS") ong e,%mvec\lbr, [ n d(sl‘fv\f}

ep%wvalu.e_s 31\!&5 783 n ’l'u_a/(ts .‘KWJ»" g,»gmvu‘.or&
Thus Huse = u‘%wwcctors ase a basfs Qr [Kq

Strategy. To find a matrix that diagonalizes A:

- ‘Quol 'H~L u%anua.lhbs av\d CDH'GIPOAO(M e«‘%euva’.lorg
- _.g You CMA n et‘awncl-ors, Han P-= [\7, Ivz l —\7“.]

Al‘a.%anall'z es A .

v, o dA

J
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(el \ R en]

_2]
1.
3
Fronn By 6, Secho. 5+, Ha M‘Q”*va'uu of A aee A=l (“""u“ ugmm,’-or [":L])

and A=12 (w-‘u« ev‘ﬂwwtors [z‘l and [“%]3 These  three e.\amm‘-grs are
\\\/\mrl\3 .wﬁpo«dw\-, so P: [—-IL . ’c'v.] dl‘agpmlﬁ.ﬂ A.

I o |

0
Example 4. Find a matrix P that diagonalizes A = l:l
1

e(‘%mvdu.es oc A’-”

-t o -17To o 1777~ o -t l{/:
: - - Vo ' \ ' + o|=]lo 2 o
checke PAP—‘O;],Z;]_'O.]OOL
h‘o -1 -1 R 2 0 o
ot Poeden Pr{g V[ whe PAPTIZ 00

a A S """‘auﬂu,ar, 10 H»(. cﬁgenvalw
are A=l (repeal'a() and 4=4,

110
Example 5. Show that the matrix A = ’O 1 IJ is not diagonalizable.
0 0 4

A~ -1 o

o!a;\-(ﬁf[—/ﬂ s obj—[ o A-I -t

] . (- (A-Q) . = as, AsG
o A-&

. ‘o - L] ' _o
w120 A [E] = met e
| © o -3 Ay _0 msz” g[élg cc a beers ﬁr vH,;S eraeuspacc.
1 3 - (- Eall r°
éi: o 3 -l] ["1]= ’] D ox = b, =3k =t
x® 0
| © o o ° } The st z[é].g i a basy Q’r Ha elgnspace..

:,Eeﬂxuz A has oulﬂ l‘_w_t_) lﬁu.arlb «“Mllfe"dm‘!' Gigbwvectors , e coummot

Am%malr’ ze A .



Math 251 Spring 2023

-3 5

Example 6. Explain why the matrix A = is diagonalizable.

1
4
0 1 -3
0 0 5

(ﬂ«n_ enawmlw-s OQ A are /,\:\,?,QIS" M are a(rs('MJ', So A
l«a.s QU\( ‘\‘Mar'\s \‘nD(LFM(M" ex‘%anm"oﬂ wl\e A s o(maoma{rzﬂblz_

[enRN e BN Y ]

One application of diagonalization is finding powers of a matrix. Recall that if D is a diagonal matrix, then
DF can be found by raising each diagonal entry to the power k.

[

A, © ---° d, X @
o dy - © ke o dy - ©

$ = . ‘ . 3 = D = . :1' - :, (Qr k)O) )
o o --- d, o ; _,,‘ d:

Suppose that A is similar to a diagonal matrix D, so that A = P-1DP where P is invertible. Then:
2. A s dl‘aso“a.‘l'tdue.

A% = (F'DP)" - (P DR)(P DR - (PTDP) =
= P p(pp ) D (PP D DP = PTDMP,

0 0 -2
Example 7. Compute A® for the matrix A = [1 2 1 :[ in Example 4.
1 0 3

-1 o _y v o ©
A-PDP" » W P { ; 7] and 'D=[‘; > :],

"
1]
)
w
- 0
2o
3
w o
—_ N
T DI |



