logo

UTK Notes


Section 7.1: Integration by Parts

How to integrate a product $\int u(x) v(x) dx$

Consider the product rule:

$\int \frac{d}{dx} u(x) v(x) dx = \int (u’(x)v(x)+u(x)(v’(x)) dx$

$u(x) v(x) = \int u’(x) v(x) - \int u’(x) v(x)dx$

$\int u(x) v’(x) dx = u(x) v(x) - \int u’(x) v(x) dx$

$\int u du = uv - \int v du$

Integration by Parts Formula

  • need $dv$ integrable
  • want $u$ simplifed by differentiation

Example 1:

$\int xe^x dx$

$u = x$              $dv = e^x dx$
$du = 1dx$       $v = e^x$

$u v - \int v du$

$= xe^x - \int e^x dx$

$= xe^x - e^x +C$

$= e^x (x-1) +C$

Example 2:

$\int ln(x) dx$

$u = lnx$              $dv = dx$
$du = \frac{1}{x} dx$         $v = x$

$u v - \int v du$

$= (lnx)x - \int x \frac{1}{x} dx$

$= (lnx)x - \int 1 dx$

$= (lnx)x - x +C$

$= x(lnx-1) +C$

Example 3:

$\int arctan(x) dx$

$u = arctanx$          $dv = dx$
$du = \frac{1}{1+x^2} dx$         $v = x$

$(arctan(x))x = - \int x \times \frac{1}{1+x^2} dx$

$r = 1 + x^2$          $dr = 2x dx$

$\frac{1}{2} \int \frac{dr}{r} = \frac{1}{2}ln \lvert r \rvert = \frac{1}{2}ln(1+x^2)$

$= x arctan(x) - \frac{1}{2} ln(1+x^2) +C$

Guide to Choose $u$, $dv$

L I A T E

<–$u$      $dv$–>

Logarithm
Inverse trig
Algebra
Trig
Exponential

Example 4:

$\int_1^{2} (xlnx) dx$

NOT DONE

Video

youtu.be/sWSLLO3DS1I

Handwritten Notes