logo

UTK Notes


Section 6.2: Volumes

  • Slice solid into cross-sections
  • Approximate slices with “cylinders”

cross-section

$v(k^{th} slice) \approx V(k^{th} cylinder)$

$= A(X_k) * \Delta X_k$

$V \approx \sum V_k$

$= \sum A (X_k) * \Delta X_k$ Reumann Summ

Take Limit -> $\int_a^b A(x) dx$

Volume of solid with cross-sectional area $A(X)$ is $V=\int_a^b A(X) dx$

Solid of Revolution

  • rotate plan region aorund axis
  • slices are disks

revolution

$A(x) = \pi r^2 = \pi[R(x)]^2$

$V = \pi \int_a^b[R(x)]^2 dx$

Example 1:

$R(x) = e^x$, $[0, 2]$, about x-axis

$V=\pi \int_0^2 (e^x)^2$

NOT DONE

Handwritten Notes