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Weak law of large numbers-Central limit Theorem

B Weak law of large numbers:
• Probability computations are easy to deal if we have one or two random variables.
• Probability problems becomes computationally intractable if we are dealing, let’s say, with
100 random variables.
• All formulas of probability that we have still apply, but they involve summations over large
range of combinations.

→ We can introduce limits that can simplify a lot of computations

Fatima Taousser Probability and Random Variables (ECE313)



Weak law of large numbers-Central limit Theorem
B Markov inequality: X ≥ 0; E[X ] ≥ aP(X ≥ a) or X ≥ 0; P(X ≥ a) ≤ E[X ]

a
- Proof:

X ≥ 0; E[X ] =
∑
x≥0

xPX (x) ≥
∑
x≥a

xPX (x) ≥
∑
x≥a

aPX (x) = a
∑
x≥a

PX (x) = aPX (x ≥ a)

B Chebytshev’s inequality: PX (|X − µ| ≥ a) ≤ σ2

a2
, µ = E[X ] and σ2 = V (X )

- Proof:

V (X ) = E[(X−µ)2] ≥ a2PX ((X−µ)2 ≥ a) = a2PX (|x−µ| ≥ a)⇒ PX (|X−µ| ≥ a) ≤ V (X )

a2

B Convergence in probability: Let a sequence of random variables Yn that converge to a.
So, we have

Yn →
n→∞

a⇔ lim
n→∞

P(|Yn − a| > ε) = 0
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Weak law of large numbers-Central limit Theorem
B Convergence of the sample mean (weak law of large numbers):
Let X1,X2, . . . ,Xn be n random variables which are independent and identically distributed
(i.i.d) with a mean µ and a standard deviation σ2. Let the sum Sn = X1 + X2 + . . .+ Xn.
Consider now the mean of this sample of random variables

Mn =
X1 + X2 + . . .+ Xn

n
=

Sn
n

• E[Mn] =
E[X1] + E[X2] + . . .+ E[Xn]

n
=

nµ

n
= µ

• V (Mn) =
V (X1) + V (X2) + . . .+ V (Xn)

n
=

nσ2

n2
=
σ2

n
→ The variance becomes smaller

for a large sample size.
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Weak law of large numbers-Central limit Theorem
B Applying the Chebyshev’s inequality:

P(|Mn − µ| ≥ ε) ≤ V (Mn)

ε2
=

σ2

nε2
→ ε

′

n→∞
⇒ Mn → µ

n→∞
in probability

⇒ The sample mean converge to the true mean.
B Example:

Let Xi =

{
1
0
→ µi =

1

2
, σ2 = E[X 2

i ]− µ2 =
1

2
− 1

4
=

1

4

Let Mn =
X1 + X2 + . . .+ Xn

n
= f . Goal: 95% confidence of 1% error

P(|Mn − f | ≥ 0.01) ≤ 0.05 ?

- Applying the Chebyshev’s inequality:

P(|Mn − f | ≥ 0.01) ≤ σ2

n(0.01)2
≤ 1

4n(0.01)2
≤ 0.05⇒ n ≥ 1

4(0.05)(0.01)2
= 50000.

⇒ n = 50000 is a large size → We can solve this problem using the central limit theorem.
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Weak law of large numbers-Central limit Theorem
B Let us scale the sum Sn = X1 + X2 + . . .+ Xn by

√
n.

⇒ Mn =

√
nSn
n

=
Sn√
n

=
X1 + X2 + . . .+ Xn√

n

• E[Mn] =
E[X1] + E[X2] + . . .+ E[Xn]√

n
=

nµ√
n

=
√
nµ

• V (Mn) = V (
X1 + X2 + . . .+ Xn√

n
) =

V (X1) + V (X2) + . . .+ V (Xn)

n
=

nσ2

n
= σ2 → If n

change, the variance doesn’t change. Let the random variable

Zn =
Sn − E[Sn]√

V (Sn)
=

Sn − E[Sn]√
nσ

⇒

{
E[Zn] = E[Sn]−E[Sn]√

nσ
= 0

V (Zn) = V (Sn−E[Sn]√
nσ

) = V (Sn)
nσ2 = nσ2

nσ2 = 1

B Central limit theorem 1: Let Zn be any distribution defined as above and Let
Z → N (0, 1). Then

P(Zn ≤ c) →
n→∞

P(Z ≤ c), for every c (i.e; Zn =
Sn − E[Sn]√

nσ
→ N (0, 1))

→ Form P(Zn ≤ c) we can deduce the probability P(Sn ≤ c)
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Central limit Theorem
B Apply to Binomial distributions:
- Let Xi be a Bernoulli distributions with parameter (p), 0 < p < 1
- Let Sn = X1 + X2 + X3 + ...+ Xn = Binomial (n,p)
- The mean of Sn = E[Sn] = np
- The variance of Sn = V (Sn) = np(1− p).

- The distribution Zn =
Sn − np√
np(1− p)

follows a standard normal distribution

- Let n = 36, p = 0.5 ⇒ E[Sn] = np = 18,V (Sn) = σ2 = np(1− p) = 9.
- Find P(Sn ≤ 21)?

P(Sn ≤ 21) = P(
Sn − E[Sn]√

nσ
≤ 21− 18√

9
) = P(Zn ≤ 1) = 0.843→ Zn → N (0, 1)

B Exact answer:
Sn → B(n, p)⇒ P(Sn ≤ 21) =

∑21
k=0 C

36
k (0.5)k(0.5)36−k =

∑21
k=0 C

36
k (0.5)36 = 0.8785

• Remark:
In general n ≈ 15 gives a good approximation.
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Central limit Theorem

Remark 2: Since Sn is a discrete random variable, so we can do some compromise to
compute P(Sn = k).
- Let the previous example s.t n = 36, p = 0.5 ⇒
E[Sn] = np = 18,V (Sn) = σ2 = np(1− p) = 9.

P(Sn = 19) = P(18.5 ≤ Sn ≤ 19.5) = P(
18.5− 18√

9
≤ Sn − 18√

9
≤ 19.5− 18√

9
)

= P(0.17 ≤ Z ≤ 0.5) = P(Z ≤ 0.5)− P(Z ≤ 0.17) = 0.124 ≈ P(Sn = 19)

B Exact answer:

Sn → B(30, 0.5)⇒ P(Sn = 19) = C 36
19 (0.5)19(0.5)36−19 = 0.1251
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Central limit Theorem
- Example 2:
- Experiment1: Filliping a fair coin one time → {H,T}.
- The random variable X : {The number of Heads}

P(X = 0) =
1

2
, P(X = 1) =

1

2
→ Bernoulli (0.5)

- Experiment2: Filliping a fair coin two times → {HH,HT, TH, TT}.

- The random variable X : {The number of Heads} → X1 + X2 → B(2, 0.5)

P(X = 0) =
1

4
, P(X = 1) =

2

4
, P(X = 2) =

1

4

- We can see that by increasing n, the distribution becomes a normal distribution.
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Central limit Theorem
- Experiment3: Filliping a fair coin 10 times → {HTHHHTTHTT, . . . }
- The random variable X : {The number of Heads} → X1 + . . .+ X10 → B(10, 0.5)

- Experiment4: Filliping a fair coin 50 times.
- The random variable X : {The number of Heads} → X1 + . . .+ X50 → B(50, 0.5)

- Let Sn = X1 + . . .+ X50 → B(50, 0.5), E[Sn] = np = (50).(0.5) = 25,
V (Sn) = σ2 = np(1− p) = (25).(0.5) = 12.5

P(Sn ≤ 19) = P(
Sn − E[Sn]√

nσ
≤ 19− 25√

12.5
) = P(Zn ≤ −1.69) = 0.046→ Zn → N (0, 1)
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Central limit Theorem
- Example 3:
- Experiment1: Rolling a 6 sided die one time → {1,2,3,4,5,6}.
- The random variable X : {The number of sixes}

P(X = 0) =
5

6
, P(X = 1) =

1

6
→ Bernoulli (

1

6
)

- Experiment2: Rolling a 6 sided die two times → {(1,2),(1,4), . . . } = 36 elements.

- The random variable X : {The number of sixes} → X1 + X2 → B(2,
1

6
)

P(X = 0) =
25

36
= 0.69, P(X = 1) =

10

36
= 0.27, P(X = 2) =

1

36
= 0.027
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Continuous Random Variables-Central limit Theorem
- Experiment3: Rolling a 6 sided die 10 times .

- The random variable X : {The number of sixes} → X1 + . . .+ X10 → B(10,
1

6
)

- Experiment4: Rolling a 6 sided die 50 times.

- The random variable X : {The number of sixes} → X1 + . . .+ X50 → B(50,
1

6
)

- Let Sn = X1 + . . .+ X50 → B(50, 1
6 ), E[Sn] = np = (50).( 1

6 ) = 8.33,
V (Sn) = σ2 = np(1− p) = (8.33).(1− 1

6 ) = 6.94

P(Sn ≤ 15) = P(
Sn − E[Sn]√

nσ
≤ 15− 8.33√

6.94
) = P(Zn ≤ 2.53) = 0.99→ Zn → N (0, 1)

- We can see that by increasing n, the distribution becomes a normal distribution.
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Weak law of large numbers-Central limit Theorem
B Second version: Let a data set Y that follow a random distribution with mean µ and
standard deviation σ → Y (µ, σ2)

- Let us take k subsets of this data set with size n (sampling) and compute the mean and
the variance of each sample subset

{x1, x2, . . . , xn}︸ ︷︷ ︸
X1→(µ1,σ1)

, {x
′

1, x
′

2, . . . , x
′

n}︸ ︷︷ ︸
X2→(µ2,σ2)

, . . . , {x∗1 , x∗2 , . . . , x∗n }︸ ︷︷ ︸
Xk→(µk ,σk )

,

X = {X1,X2, . . . ,Xk} →︸︷︷︸
means

X̄ = {µ1, µ2, . . . µk} → X̄ (µ̄, σX̄ )
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Central limit Theorem
- The central limit Theorem 2:
• The mean of sample means equal to the mean of the overall data set Y

⇒ E(X̄ ) = E(Y ) ⇒ µ̄ = µ (it is independent to the sample size).

• The standard deviation of sample means

σX̄ =
σ√
n

- The central limit Theorem 3:
If the data set is normally distributed then the sample means will have a normal
distribution (it is independent to the sample size) → X̄ → N (µ̄, σ2

X̄
)

- The central limit Theorem 4:
If the data set is not normally distributed but the sample size is ”n ≥ 30”, then the
sample means will approximate a normal distribution → X̄ → N (µ̄, σ2

X̄
) for n ≥ 30
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Central limit Theorem
- Example1:
Suppose salaries at a very large corporation have a mean of $62000 and a standard
deviation of $32000. If 100 employees are randomly selected, what is the probability that
their average salary exceeds $66000?
Solution:
- Let Y be the data set of all the salaries such that µ = $62000 and σ = $32000
⇒ Y → ($62000, ($32000)2) (We don’t have any information on how these salaries are
distributed!!).

- Let X̄ be the set of averages salaries of groups of 100 employees ⇒ X̄ → N (µ,

(
σ√
n

)2

)

P(X̄ > 66000) = P(
X̄ − µ

σ√
n

>
66000− 62000

32000√
100

) = P(Z > 1.25) = 1− P(Z < 1.25)

with Z → N (0, 1) ⇒ P(X̄ > 66000) = 1− P(Z < 1.25) = 1− 0.8944 = 0.1056 → (using

the table of the standard normal distribution)
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Central limit Theorem
- Example 2: Consider three pool balls, each with a number on it → X = {1, 2, 3}. Two of
the balls are selected randomly (with replacement), and the average of their numbers is
computed. All possible outcomes are:
{(1,1), (1,2), (1,3), (2,3), (3,3), (2,2), (2,1), (2,3), (3,1) }. means of all these outcomes
are X̄ = {1, 3

2 , 2,
5
2 , 3, 2,

3
2 ,

5
2 , 2}, and shown below:

E[X̄ ] =
1 + 1.5 + 2 + 2.5 + 3 + 2 + 1.5 + 2.5 + 2

9
= 2=E[X ] =

1 + 2 + 3

3

V (X̄ ) = E[X̄ 2]− E2[X̄ ] =
1

3
<V (X ) = E[X 2]− E2[X ] =

2

3
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Central limit Theorem
- Example2:
A certain group of welfare recipients receives SNAP benefits of $110 per week, in average,
with a standard deviation of $20. Knowing that these benefits follow a normal distribution,
what is the probability that the mean of a random sample of 25 people will be less than
$120 per week?
Solution:
- Let Y be the data set of all benefits such that µ = $110 and σ = $20
⇒ Y → N ($110, ($20)2).

- Let X̄ be the set of averages benefits of groups of 25 persons ⇒ X̄ → N (µ,

(
σ√
n

)2

)

P(X̄ < 120) = P(
X̄ − µ

σ√
n

<
120− 110

20√
25

) = P(Z < 2.5)

with Z → N (0, 1) ⇒ P(X̄ < 120) = P(Z < 2.5) = 0.9938 → (using the table of the

standard normal distribution)
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Central limit Theorem
- Example3:
Suppose the grades in a finite mathematics class are Normally distributed with a mean of
75 and a standard deviation of 5.
a) What is the probability that a randomly selected student had a grade of at least 83?

b) What is the probability that the average grade for 5 randomly selected students was at
least 83?
Solution:
- Let Y be the data set of all scores such that µ = 75 and σ = 5 ⇒ Y → N (75, 52).

a) P(X > 83) = P(X−µ
σ > 83−75

5 ) = P(Z > 1.6) = 1− P(Z < 1.6) = 1− 0.952 = 0.054

b) Let X̄ be the set of averages scores of groups of 5 persons ⇒ X̄ → N (µ,

(
σ√
n

)2

)

P(X̄ > 83) = P(
X̄ − µ

σ√
n

>
83− 75

5√
5

) = P(Z > 3.57) = 1−P(Z < 3.57) = 1−0.9998 = 0.0002
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Central limit Theorem
- Example 4:
Let X = U(1, 5).
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Central limit Theorem

- The importance of the central limit Theorem:

• Universal and easy to apply, only means and variances matter.

• Simplify the study of a large set of data → Fairly accurate computational
shortcut.

• If the data are randomly distributed, so by taking samples greater than 30
allows us to get many information about the data set and solve many
problems.

Remark: The central limit theorem cannot be applied for distributions which
are not independent and identically distributed (i.i.d)
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Central limit Theorem-Training
Problem 1: The amount of impurity in a batch of a chemical product is a random variable
with mean value µ = 9 g and standard deviation σ = 1.5 g. (unknown distribution) If 50
batches are independently prepared, what is the (approximate) probability that the average
amount of impurity in these 50 batches is between 8.6 and 9.5 g?
Solution: Let X̄ = {µ1, µ2, . . . , µk} where µi are the means of samples with size n = 50.

According to the central limit theorem X̄ → N (µ,
σ√
n

)

P(8.6 ≤ X̄ ≤ 9.5) = P(
8.6− 9

1.5√
50

≤ X̄ − 9
1.5√

50

≤ 9.5− 9
1.5√

50

) = P(−1.88 ≤ Z ≤ 2.35)

= P(Z ≤ 2.35)− P(Z ≤ −1.88) = 0.9906− 0.03 = 0.96.

- If we will decrease the size of the sample n = 10

P(8.6 ≤ X̄ ≤ 9.5) = P(
8.6− 9

1.5√
10

≤ X̄ − 9
1.5√

10

≤ 9.5− 9
1.5√

10

) = P(−0.84 ≤ Z ≤ 1.05) = 0.85−0.2 = 0.65

- By increasing n the probability that the means of samples be close to the mean of the
overall set becomes less since the variance becomes smaller.
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Central limit Theorem-Training
Problem 2:
An unknown distribution Xi has a mean of µ = 90 and a standard deviation of σ = 15. A
sample of size n = 80 is drawn randomly from the population.

a. Find the probability that the sum of the 80 values (or the total of the 80 values) is
more than 7500.

b. Find the sum that is 1.5 standard deviations below the mean of the sums

Solution:
We want to compute the probability for the sum of 80 values
Sn =

∑80
i=1 Xi → N (nµ, (

√
nσ)2) = N (80(90), (15

√
80)2) (according to the central limit

theorem)

P(Sn > 7500) = P(
Sn − E[Sn]√

V (Sn)
>

7500− 80(90)

15
√

80
) = P(Z > 2.23) = 1− P(Z < 2.23)

= 1− 0.987 = 0.013
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Central limit Theorem-Training
Problem 3:
Suppose a surveyor wants to measure a known distance, say of 1 mile, using a transit and
some method of triangulation. He knows that because of possible motion of the transit,
atmospheric distortions, and human error, any one measurement is apt to be slightly in
error. He plans to make several measurements and take an average. He assumes that his
measurements are independent random variables with a common distribution of mean µ = 1
and standard deviation σ = 0.0002.
- What can he say about the average?
- How many measurements should he make to be reasonably sure that his average lies
within 0.0001 of the true value (let say 95% confidence)?
Solution:

- He can say that if n is large, the average
Sn
n

has a density function that is approximately

normal, with mean µ = 1 mile, and standard deviation σ =
0.0002√

n
miles.

- According to the Chebyshev’s inequality, we have

P(|Sn
n
− µ| ≥ 0.0001) ≤

V (Sn

n )

(0.0001)2
=

(0.0002)2

n.10−8
=

4

n
≤ 0.05⇒ n ≥ 80
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