Probability and Random Variables (ECE313/ECE317)

Fatima Taousser

Departement of Electrical Engineering and Computer Sciences, UTK ftaousse@utk.edu

Random variables Fall 2023

- Random variable: Discrete / Continuous.
- Expectation (mean), Variance, standard deviation.
- Mathematical background
- Discrete Random variables Probability mass function (PMF).
 - Uniform
 - Bernoulli
 - Binomial
 - Geometric
 - Poisson
- Continuous Random variables Probability density function (PDF).
 - Uniform
 - Exponential
 - Normal
- Multi-Random variable: Covariance, Correlation.

Fatima Taousser

Probability and Random Variables (ECE313/ECE317)

Random variable: Usually written X;

Is a variable (or a function) whose possible values are numerical quantities that take random values (from a sample set) corresponding to outcomes of a random phenomena.

$$egin{array}{rcl} X: & \Omega & o & \mathbb{R} \ & \omega & o & X(\omega) = x \end{array}$$

Example1:

A raffle consists of 15 tickets. There are 4 tickets of 10, 4 tickets of 20 and 7 losing tickets (0). You have to buy a ticket that costs 5.

X: The random variable associating to the **player's gain**

- Possible cases={\$0, \$10, \$20}
- $X = \text{Gain} = \{-5, 5, 15\}$

 $egin{array}{rcl} \Omega = {\sf Universe} = 15 \ {\sf tickets} \ o & X: & \Omega \ o & \mathbb{R} \ & \omega & o & X(\omega) = \{-5, 10, 15\} \end{array}$

$$\mathbb{P}(X = -5) = \frac{7}{15} = \mathbb{P}(\omega = 0), \ \mathbb{P}(X = 5) = \frac{4}{15} = \mathbb{P}(\omega = 10), \ \mathbb{P}(X = 15) = \frac{4}{15} = \mathbb{P}(\omega = 20).$$

- A random variable if a function of the outcomes of some experiment

Example2:

- $\Omega = \{ \mathsf{Students} \text{ of the ECE-313 class} \}$
- \bullet Experiment:"Choose randomly a student and measure the height of that student "
- X = The height of the student

X = The height of the student

▷ A random variable can be **discrete** or **continuous**.

- Discrete random variable: Takes only countable numbers.
- Number of children in a family.
- Number of patients in a doctor surgery.
- Number of defective light bulbs in a box.
- The birthday of a student chosen randomly.
- Continuous random variable: Takes its values in an interval.
- The weight of an animal taken at random in a park.
- The temperature.
- The distance.

- Notation:

$$egin{aligned} X &\colon \Omega & o &\mathbb{R} \ &\omega & o & X(\omega) = x \ \mathbb{P}_X(x) &= \mathbb{P}(X=x) = \mathbb{P}(\omega \in \Omega : \ X(\omega) = x) \ 0 &\leq \mathbb{P}_X(x) \leq 1, \qquad \sum_x \mathbb{P}_X(x) = 1 \end{aligned}$$

- Probability mass function (PMF):

The probability mass function is $\mathbb{P}_X(.)$ and called the **probability** distribution or the **probability law**

Example:

Flipping a die of 6 faces. If the result is even, we earn \$2, if the result is 1, we earn \$3, and if the result is 3 or 5, we lose \$4. What is the probability distribution of the random variable X which gives the gain of this game.

- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- $X = \{\$2, \$3, \$-4\}$

Fatima Taousser

Probability and Random Variables (ECE313/ECE317)

Probability: Random variables

$$\mathbb{P}(X=2) + \mathbb{P}(X=3) + \mathbb{P}(X=-4) = \frac{1}{2} + \frac{1}{6} + \frac{1}{3} = 1$$

Probability: Examples

Example: Two rolls of a tetrahedral die

$$\Omega = \{ \mathsf{All} \ (X, Y) \} = \{ (1, 1), (1, 2), \dots (4, 4) \} \Rightarrow 16 \text{ elements}$$

 $\mathbb{P}(\mathsf{each} \ (X, Y)) = rac{1}{16}$

Random variables: Examples

Let the random variable Z = X + Y. Find the probability distribution $\mathbb{P}_{Z}(.)$

$$Z = \{2, 3, 4, 5, 6, 7, 8\}$$

$$\{Z = 2\} = \{(1, 1)\} \rightarrow \mathbb{P}(Z = 2) = \frac{1}{16}$$

$$\{Z = 3\} = \{(1, 2), (2, 1)\} \rightarrow \mathbb{P}(Z = 3) = \frac{2}{16}$$

$$\{Z = 4\} = \{(1, 3), (3, 1), (2, 2)\} \rightarrow \mathbb{P}(Z = 4) = \frac{3}{16}$$

$$\{Z = 5\} = \{(1, 4), (4, 1), (2, 3), (3, 2)\} \rightarrow \mathbb{P}(Z = 5) = \frac{4}{16}$$

$$\{Z = 6\} = \{(2, 4), (4, 2), (3, 3)\} \rightarrow \mathbb{P}(Z = 6) = \frac{3}{16}$$

$$\{Z = 7\} = \{(3, 4), (4, 3)\} \rightarrow \mathbb{P}(Z = 7) = \frac{2}{16}$$

$$\{Z = 8\} = \{(4, 4)\} \rightarrow \mathbb{P}(Z = 8) = \frac{1}{16}$$

$$\mathbb{P}_{Z^{(.)}}$$

$$\stackrel{1}{=} \frac{2}{16} \xrightarrow{\frac{2}{16}} \frac{3}{16} \xrightarrow{\frac{4}{16}} \frac{3}{16} \xrightarrow{\frac{2}{16}} \frac{1}{16} \xrightarrow{\frac{2}{16}} \frac$$

Example: Tossing an unfair coin, such that $\mathbb{P}(H) = p$ and $\mathbb{P}(T) = 1 - p$ • $\Omega = \{H, T\}$ - Let $X = \begin{cases} 1; & \text{if we will get H} \\ 0; & \text{if we will get T} \end{cases}$ $\mathbb{P}(X=1) = p, \qquad \mathbb{P}(X=0) = 1 - p$ р 1-р 0

Random variables: Expectation

 \triangleright Expectation: Is the weighted average of all possible values of the random variable X and it is denoted by $\mathbb{E}[X] \rightarrow$ The weight here means the probability of each specific value of the random variable.

Example: The following probability distribution tells us the probability that a certain soccer team scores a certain number of goals in a given game

Goals (X)	Probability P(X)		
0	0.18		
1	0.34		
2	0.35		
3	0.11		
4	0.02		

 $\mathbb{E}[X] = \sum_{i} x_{i} \mathbb{P}(X = x_{i}) = (0 \times 0.18) + (1 \times 0.34) + (2 \times 0.35) + (3 \times 0.11) + (4 \times 0.02) = 1.45$

This represents the expected number of goals (1.45 goals) that the team will score in any
given game.Probability and Random Variables (ECE313/ECE317)

Random variables: Expectation

Expectation vs the mean (or average):

We typically calculate the mean after we have actually collected raw data. Let x_i : Raw data values, and n: Sample size \rightarrow Mean $= \sum_{i=1}^{n} \frac{x_i}{n}$

Example:

Suppose we record the number of goals that a soccer team scores in 15 different games: Goals Scored: $\{1, 1, 0, 2, 2, 1, 0, 3, 1, 1, 1, 2, 4, 3, 1\}$

$$\mathsf{Mean} = \frac{1+1+0+2+2+1+0+3+1+1+1+2+4+3+1}{15} = 1.533 \text{ goals}.$$

This represents the mean number of goals scored per game by the team.

Remark:

• The expectation value of a random variable is the average that you expect to see in a large number of independent repetitions of the experiment.

• The expected value is not one of the possible values (or outcomes). However, if you average the values of a large number of experiments, the result approaches the expected value.

Random variables: Expectation

Example1: You are plying a game where you can earn \$4 with probability
$$\frac{1}{4}$$
,\$1 with probability $\frac{1}{2}$ and you can loss \$2 with probability $\frac{1}{4} \rightarrow X = \{\$4,\$1,-\$2\}$

$$\begin{array}{c|c} x_i & 4 & 1 & -2 \\ \hline \mathbb{P}(X = x_i) & \mathbb{P}(X = 4) = \frac{1}{4} & \mathbb{P}(X = 1) = \frac{1}{2} & \mathbb{P}(X = -2) = \frac{1}{4} \end{array}$$

How much do you expect to win by plying this game many times?

$$\mathbb{E}[X] = (\frac{1}{4} \times \$4) + (\frac{1}{2} \times \$1) + (\frac{1}{4} \times -\$2) = \$1$$

- If I will play this game many times, I'm expecting to win \$1

Random variables-Expectation

Example2:

Let an experiment consist of tossing a fair coin three times. Let X denote the number of Heads. Then the possible values of X are $\{0, 1, 2, 3\}$.

$$\Omega = \{\underbrace{HHH}_{X=3}, \underbrace{HHT}_{X=2}, \underbrace{HTH}_{X=2}, \underbrace{HTH}_{X=1}, \underbrace{THH}_{X=2}, \underbrace{THT}_{X=1}, \underbrace{TTH}_{X=1}, \underbrace{TTT}_{X=0}\}$$

The corresponding probabilities are:

$$\mathbb{P}(X=0) = \frac{1}{8}, \ \mathbb{P}(X=1) = \frac{3}{8}, \ \mathbb{P}(X=2) = \frac{3}{8}, \ \mathbb{P}(X=3) = \frac{1}{8}$$

Thus, the expected value of X is $\mathbb{E}[X] = (0 \times \frac{1}{8}) + (1 \times \frac{3}{8}) + (2 \times \frac{3}{8}) + (3 \times \frac{1}{8}) = \frac{3}{2} = 1.5.$ $\frac{1}{8}$ $\frac{1}{8}$

Random variables-Expectation

Example3: Two rolls of a tetrahedral die: $X = \{1, 2, 3, 4\}$ and $Y = \{1, 2, 3, 4\}$ Let the random variable Z = X + Y.

Fatima Taousser

Probability and Random Variables (ECE313/ECE317)

- Properties of the expectation:
 - If $X \ge 0$, then $\mathbb{E}[X] \ge 0$

 $\mathbb{E}[X] = \sum_{i} x_i \mathbb{P}(X = x_i)$. Since all $x_i \ge 0$ and $\mathbb{P}(.) \ge 0 \implies \mathbb{E}(X) \ge 0$

• If $a \leq X \leq b$, then $a \leq \mathbb{E}[X] \leq b$

$$a \leq x_i \leq b \Rightarrow a \mathbb{P}(X = x_i) \leq x_i \mathbb{P}(X = x_i) \leq b \mathbb{P}(X = x_i)$$

$$\Rightarrow \sum_i a \mathbb{P}(X = x_i) \leq \sum_i x_i \mathbb{P}(X = x_i) \leq \sum_i b \mathbb{P}(X = x_i)$$

$$\Rightarrow a \underbrace{\sum_i \mathbb{P}(X = x_i)}_{=1} \leq \underbrace{\sum_i x_i \mathbb{P}(X = x_i)}_{\mathbb{E}[X]} \leq b \underbrace{\sum_i \mathbb{P}(X = x_i)}_{=1} \Rightarrow a \leq \mathbb{E}[X] \leq b$$

• If X = c is a constant value, then $\mathbb{E}[c] = c$ $\mathbb{E}[X] = \sum_{i} x_{i} \mathbb{P}(X = x_{i}) = \sum_{i} c \mathbb{P}(X = c) = c \sum_{i} \mathbb{P}(X = c) = c$

Fatima Taousser

Probability and Random Variables (ECE313/ECE317)

• $\mathbb{E}[aX + b] = a\mathbb{E}[x] + b$ (linearity property)

$$\mathbb{E}[aX+b] = \sum_{i} (ax_i+b) \mathbb{P}(X=x_i) = \sum_{i} [ax_i \mathbb{P}(X=x_i)+b \mathbb{P}(X=x_i)]$$
$$= a \underbrace{\sum_{i} x_i \mathbb{P}(X=x_i) + b}_{=\mathbb{E}[X]} \underbrace{\mathbb{P}(X=x_i) = a\mathbb{E}[X] + b}_{=\mathbb{E}[X]}$$

• Example: Let X be the salary of some employers, and $\mathbb{E}[X] = 1500$ be the

expected salary. Let Y be a new salary, s.t Y = 2X + 100. what is the expectation of this new salary?

$$\mathbb{E}[Y] = \mathbb{E}[2X + 100] = 2 \ \mathbb{E}(X) + 100 = 3100$$

$$\mathbb{E}[g(X)] = \sum_{i} g(x_i) \mathbb{P}(X = x_i)$$

Example 1: Let the random variable $X = \{2, 3, 4, 5\}$, such that

$$\mathbb{P}(X=2) = 0.1, \ \mathbb{P}(X=3) = 0.2, \ \mathbb{P}(X=4) = 0.3, \ \mathbb{P}(X=5) = 0.4$$

Let Y = g(X) be another random variable determined by the original random variable X such that $Y = g(X) = \{4, 3\}$, as it is shown in the figure below, such that • $g(5) = g(4) = 4 \rightarrow \mathbb{P}(Y = 4) = \mathbb{P}(X = 5) + \mathbb{P}(X = 4) = 0.4 + 0.3 = 0.7$ • $g(3) = g(2) = 3 \rightarrow \mathbb{P}(Y = 3) = \mathbb{P}(X = 2) + \mathbb{P}(X = 3) = 0.1 + 0.2 = 0.3$

- What is the expectation of Y?

Method 1:

$$\mathbb{E}[Y] = \sum_{i} y_i \mathbb{P}(Y = y_i) = 3 (0.3) + 4 (0.7) = 3.7$$

Method 2:

$$\mathbb{E}[g(X)] = \sum_{i} g(x_i) \mathbb{P}(X = x_i) = g(2)\mathbb{P}(X = 2) + g(3)\mathbb{P}(X = 3) + g(4)\mathbb{P}(X = 4) + g(5)\mathbb{P}(X = 5)$$

$$= 3 (0.1) + 3 (0.2) + 4 (0.3) + 4 (0.4) = 3.7$$

Example 2: Let the random variable $X = \{2, 3, 4, 5\}$, such that

$$\mathbb{P}(X=2) = 0.1, \ \mathbb{P}(X=3) = 0.2, \ \mathbb{P}(X=4) = 0.3, \ \mathbb{P}(X=5) = 0.4$$

1) What is the expectation of $Y = g(X) = X^2$?

2) Compute in two different ways the expectation of Y = g(X) = 3X + 1. Solution:

$$1)\mathbb{E}[Y] = \mathbb{E}[X^2] = \sum_{i} x_i^2 \mathbb{P}(X = x_i) = (2^2 \times 0.1) + (3^2 \times 0.2) + (4^2 \times 0.3) + (5^2 \times 0.4) = 17$$

2) Method 1:

$$\mathbb{E}[Y] = \mathbb{E}[3X+1] = \sum_{i} (3x_{i}+1)\mathbb{P}(X=x_{i}) = [(3(2)+1)\times0.1] + [(3(3)+1)\times0.2] + [(3(4)+1)\times0.3]$$

 $+[(3(5)+1) \times 0.4] = 13$

Method 2: We can use the linearity property

$$\mathbb{E}[Y] = \mathbb{E}[3X+1] = 3\mathbb{E}[X] + 1 = 3\underbrace{[(2 \times 0.1) + (3 \times 0.2) + (4 \times 0.3) + (5 \times 0.4)]}_{=4} + 1 = 13$$

 \triangleright The variance of a random variable X is often written as V(X), and it is defined by:

 $|V(X) = \sum_{i} [x_i - \mathbb{E}[X]]^2 \mathbb{P}(X = x_i) | \rightarrow$ The mean of the square of distances from the expectation

 \bullet The variance measures the spread of numerical variables and determines the degree to which the values differ from the mean. .

- If many values are close to the mean then the variance is small and if many values are far from the mean then the variance is large.
- In the following example: The red population has $\mathbb{E}=100,~~V=100,$ and the blue population has $\mathbb{E}=100,~~V=2500$

I

• Variance: The variance can be formulated as

$$\begin{aligned} \mathcal{L}(X) &= \sum_{i} [(x_{i} - \mathbb{E}[X])^{2} \mathbb{P}(X = x_{i})] \\ &= \sum_{i} [(x_{i}^{2} - 2x_{i} \mathbb{E}(X) + \mathbb{E}^{2}[X]) \mathbb{P}(X = x_{i})] \\ &= \sum_{i} x_{i}^{2} \mathbb{P}(X = x_{i}) - 2 \sum_{i} (x_{i} \mathbb{E}[X]) \mathbb{P}(X = x_{i}) + \sum_{i} \mathbb{E}^{2}[X] \mathbb{P}(X = x_{i}) \\ &= \mathbb{E}[X^{2}] - 2\mathbb{E}[X] \underbrace{\sum_{i} x_{i} \mathbb{P}(X = x_{i}) + \mathbb{E}^{2}[X]}_{\mathbb{E}[X]} \underbrace{\sum_{i} \mathbb{P}(X = x_{i})}_{=1} \end{aligned}$$

 $= \mathbb{E}[X^2] - 2\mathbb{E}[X] \mathbb{E}[X] + \mathbb{E}^2[X] = \mathbb{E}[X^2] - \mathbb{E}^2[X]$

• The variance is the expectation of the squared deviation of a random variable from its mean.

$$V(X) = \sum_{i} [x_i - \mathbb{E}[X]]^2 \mathbb{P}(X = x_i) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}^2[X]$$

• Example: Random variable X has the following PMF (or probability distribution)

$$\begin{array}{|c|c|c|c|c|c|}\hline x_i & 2 & 3 & -4 \\ \hline \mathbb{P}(X=x_i) & \mathbb{P}(X=2) = \frac{1}{2} & \mathbb{P}(X=3) = \frac{1}{6} & \mathbb{P}(X=-4) = \frac{1}{3} \\ \hline \end{array}$$

$$\mathbb{E}[X] = \sum_{x} x_i \mathbb{P}(X = x_i) = 2 \mathbb{P}(X = 2) + 3 \mathbb{P}(X = 3) - 4 \mathbb{P}(X = -4) = 2(\frac{1}{2}) + 3(\frac{1}{6}) - 4(\frac{1}{3}) = \frac{1}{6}$$

$$V(X) = \mathbb{E}[X^2] - \mathbb{E}^2[X] = \left[\sum_{x} x_i^2 \mathbb{P}(X = x_i)\right] - \mathbb{E}^2[X] = \left[4(\frac{1}{2}) + 9(\frac{1}{6}) + 16(\frac{1}{3})\right] - \frac{1}{36} = 8.805$$
$$V(X) = \sum_{i} [x_i - \mathbb{E}[X]]^2 \mathbb{P}(X = x_i) = (2 - \frac{1}{6})^2(\frac{1}{2}) + (3 - \frac{1}{6})^2(\frac{1}{6}) + (-4 - \frac{1}{6})^2(\frac{1}{3}) = 8.805$$

Fatima Taousser

Probability and Random Variables (ECE313/ECE317)

• Example: Suppose that in a class of 10 people, grades on a test are given by 30, 30, 30, 60, 60, 80, 80, 80, 90, 100. Suppose a test is drawn from the pile at random and the score X is observed.

- Calculate the expected value of the randomly drawn test score.
- Calculate the variance according to this grading distribution.

Fatima Taousser

Probability and Random Variables (ECE313/ECE317)

Random variables: Standard deviation

• Standard deviation: The standard deviation, denoted by σ , is the positive square root of the variance. It is the mean deviation of x_i from \mathbb{E} and it is defined by:

 $\sigma(X) = \sqrt{V(X)}$

Example: The grading example

Random variables: Standard deviation

• Example: Consider the grading example and suppose now that grades are

×i	30	60	70	80
$\mathbb{P}(X = x_i)$	1	5	$\frac{1}{1}$	3
(//	10	10	10	10

 $\mathbb{E}[X] = 30 \ (\frac{1}{10}) + 60 \ (\frac{5}{10}) + 70 \ (\frac{1}{10}) + 80 \ (\frac{3}{10}) = 64 \rightarrow$ The same expectation as the previous example

$$V(X) = [30^2 \frac{1}{10} + 60^2 \frac{5}{10} + 70^2 \frac{1}{10} + 80^2 \frac{3}{10}] - 64^2 = 204 \rightarrow \sigma = \sqrt{204} = 14.28$$

 \rightarrow The variance is smaller than the one of the previous example.

Random variables: Standard deviation

Example:

$$x_i$$
 2
 3
 -4

 $\mathbb{P}(X = x_i)$
 $\mathbb{P}(X = 2) = \frac{1}{2}$
 $\mathbb{P}(X = 3) = \frac{1}{6}$
 $\mathbb{P}(X = -4) = \frac{1}{3}$

$$\mathbb{E}[X] = 2 \mathbb{P}(X = 2) + 3 \mathbb{P}(X = 3) + (-4) \mathbb{P}(X = -4) = 2(\frac{1}{2}) + 3(\frac{1}{6}) - 4(\frac{1}{3}) = \frac{1}{6}$$

$$V(X) = \mathbb{E}[X^2] - \mathbb{E}^2[X] = [4\frac{1}{2} + 9\frac{1}{6} + 16\frac{1}{3}] - \frac{1}{36} = \frac{317}{36} \rightarrow \sigma(X) = \sqrt{\frac{317}{36}} = 2.96$$

Probability and Random Variables (ECE313/ECE317)

Fatima Taousser

• Variance properties:

•
$$V(aX) = a^2 V(X)$$

 $V(aX) = \sum_i [ax_i - \mathbb{E}[aX]]^2 \mathbb{P}(X = x_i)$
 $= \sum_i [ax_i - a \mathbb{E}[X]]^2 \mathbb{P}(X = x_i)$
 $= \sum_i a^2 (x_i - \mathbb{E}[X])^2 \mathbb{P}(X = x_i)$
 $= a^2 \sum_i (x_i - \mathbb{E}[X])^2 \mathbb{P}(X = x_i)$
 $= a^2 V(X)$
• $V(c) = \sum_i (c - \mathbb{E}[c])^2 \mathbb{P}(X = c)$
 $= \sum_i (c - c)^2 \mathbb{P}(X = c)$

= 0 Fatima Taousser

Probability and Random Variables (ECE313/ECE317)

•
$$V(a + X) = V(X)$$

 $V(a + X) = \sum_i [(a + x_i) - \mathbb{E}[a + X]]^2 \mathbb{P}(X = x_i)$
 $= \sum_i [a + x_i - (a + \mathbb{E}[X])]^2 \mathbb{P}(X = x_i)$
 $= \sum_i (a + x_i - a - \mathbb{E}[X])^2 \mathbb{P}(X = x_i)$
 $= \sum_i (x_i - \mathbb{E}[X])^2 \mathbb{P}(X = x_i)$
 $= V(X)$

•

$$V(a - X) = V(X)$$

$$V(a - X) = \sum_{i} [(a - x_{i}) - \mathbb{E}[a - X]]^{2} \mathbb{P}(X = x_{i})$$

$$= \sum_{i} [a - x_{i} - (a - \mathbb{E}[X])]^{2} \mathbb{P}(X = x_{i})$$

$$= \sum_{i} (a - x_{i} - a + \mathbb{E}[X])^{2} \mathbb{P}(X = x_{i})$$

$$= \sum_{i} (-x_{i} + \mathbb{E}[X])^{2} \mathbb{P}(X = x_{i})$$

$$= \sum_{i} (x_{i} - \mathbb{E}[X])^{2} \mathbb{P}(X = x_{i})$$

$$= V(X)$$

•
$$V(aX + b) = a^2 V(X)$$

 $V(aX + b) = \sum_i [(ax_i + b) - \mathbb{E}[aX + b]^2 \mathbb{P}(X = x_i))$
 $= \sum_i [(ax_i + b) - (a \mathbb{E}[X] + b)]^2 \mathbb{P}(X = x_i)$
 $= \sum_i (ax_i + b - a \mathbb{E}[X] - b)^2 \mathbb{P}(X = x_i)$
 $= \sum_i (a x_i - a \mathbb{E}[X])^2 \mathbb{P}(X = x_i)$
 $= a^2 \sum_i (x_i - \mathbb{E}[X])^2 \mathbb{P}(X = x_i)$
 $= a^2 V(X)$