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Probability: Conditioning
- Conditional probability: The conditional probability is defined as

P(A|B) = probability of A, given that event B occurred or certain.

⇒ use new information to revise a model

- B becomes our new universe (we are certain that B occurs)

Example: Consider the weather of the 6th of February of the last 10 years

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Raining X X X X X X X X 8 days
Windy X X X X X X X 7 days
Humid X X X X X 5 days

P[Raining ] =
8

10
= 80%, P[Raining |Windy ] =

5

7
= 71%, P[Raining |windy∩Humid ] =

2

3
= 66%

P(A|B) =
P(A ∩ B)

P(B)

- Assumption: P(B) 6= 0
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Probability: Conditioning

|Ω| = 12, |A| = 5, |B | = 6, |A ∩ B | = 2

P(A) =
5

12
, P(B) =

6

12
, P(A ∩ B) =

2

12

- Consider that B is the new universe ⇒ P(A|B) =
2

6
and P(B |B) = 1

P(A|B) =
2

12
6

12

=
P(A ∩ B)

P(B)
=

2

12
× 12

6
=

2

6
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Probability: Conditioning

- Consequence (symmetry):

P(B |A) =
P(A ∩ B)

P(A)

- Consider the previous example:

P(B |A) =
2

12
5

12

=
P(A ∩ B)

P(A)
=

2

5
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Probability: Conditioning
Example: Consider the two rolls of a tetrahedral die
Ω = {(1, 1), (1, 2), . . . (4, 4)} = 16 elements
- Event B = {min(X ,Y ) = 2}
⇒ B = {(2, 2), (2, 3), (2, 4), (3, 2), (4, 2)} → |B | = 5⇒ P(B) =

5

16

- Event: M = {max(X ,Y ) = 2}
⇒ M = {(1, 2), (2, 1), (2, 2)} → |M | = 3⇒ P(M) =

3

16

P(M |B) =
P(M ∩ B)

P(B)
=

P(2, 2)

P(B)
=

1
16
5

16

=
1

5
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Probability: Conditioning
Example

- Event B = {min(X ,Y ) = 2}
= {(2, 2), (2, 3), (2, 4), (3, 2), (4, 2)} → |B | = 5⇒ P(B) = 5

16

- Event M = {max(X ,Y ) = 1} = {(1, 1)} → |M | = 1⇒ P(M) = 1
16

→ M ∩ B = ∅
P(M |B) =

P(M ∩ B)

P(B)
=

P(∅)
P(B)

= 0

Fatima Taousser Probability and Random Variables (ECE313/ECE317)



Probability: Model based on conditional probability
Example:
For headaches three out of five patients take aspirin (or equivalent), two out of five take a
drug M.
-With aspirin, 75% of the patients have been relieved.
-With drug M, 90% of the patients have been relieved.

1. What is the overall rate of people relieved?

2. What is the likelihood that a patient has taken aspirin knowing that he has been
relieved?
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Probability: Model based on conditional probability
Modeling the problem:

-Universe: Ω = {5 person have headaches}
- Event A: {3 patients took aspirin} → P(A) =

3

5

- Event B: {2 patients took drug M} → P(B) =
2

5
- Event C: {Patient is relieved}
- We have P(C |A) = 0.75
- We have P(C |B) = 0.9
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Probability: Model based on conditional probability
Solution: 1) The overall rate of people who relieved = P(C ).
- In this example, we have A ∪ B = Ω and A ∩ B = ∅
- The event C can be written as: C = Ω ∩ C = (A ∪ B) ∩ C = (A ∩ C ) ∪ (B ∩ C )

P(C ) = P[(A ∩ C ) ∪ (B ∩ C )]
= P(A ∩ C ) + P(B ∩ C )− P(A ∩ B ∩ C )
= P(A ∩ C ) + P(B ∩ C )− P(∅ ∩ C )
= P(A ∩ C ) + P(B ∩ C )− P(∅)
= P(A ∩ C ) + P(B ∩ C )
= P(A)P(C |A) + P(B)P(C |B)
= 3

5 (0.75) + 2
5 (0.9) = 0.81.
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Probability: Model based on conditional probability
2) The likelihood that a patient has taken aspirin knowing that he has been relieved?
→ P(A|C )

P(A|C ) =
P(A ∩ C )

P(C )
=

P(A) P(C |A)

P(C )
=

3
5 (0.75)

0.81
= 0.5556

2) The likelihood that a patient has taken drug M knowing that he has been relieved

→ P(B|C ) =
P(B ∩ C )

P(C )
=

P(B) P(C |B)

P(C )
=

2
5 (0.9)

0.81
= 0.4444

Fatima Taousser Probability and Random Variables (ECE313/ECE317)



Probability: Conditioning

- Properties of conditional probability:

• P(A|Ω) =
P(A ∩ Ω)

P(Ω)
=

P(A)

P(Ω)
=

P(A)

1
= P(A) and P(B |Ω) = P(B)

• P(Ω|B) =
P(Ω ∩ B)

P(B)
=

P(B)

P(B)
= 1

• P(B |B) =
P(B ∩ B)

P(B)
=

P(B)

P(B)
= 1

• P(A ∩ B) = P(B)P(A|B) and P(A ∩ B) = P(A)P(B |A)
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Probability: Conditioning
• If A ∩ C = ∅, we have P((A ∪ C )|B) = P(A|B) + P(C |B)

P(A ∪ C |B) =
P(A ∪ C ) ∩ B

P(B)

=
P[(A ∩ B) ∪ (C ∩ B)]

P(B)

=
P(A ∩ B) + P(C ∩ B)− P[(A ∩ B) ∩ (C ∩ B)]

P(B)

=
P(A ∩ B) + P(C ∩ B)− P(∅)

P(B)
=

P(A ∩ B)

P(B)
+

P(C ∩ B)

P(B)
= P(A|B) + P(C |B)

Consequence: A ∩ Ac = ∅ ⇒ P((A ∪ Ac)︸ ︷︷ ︸
Ω

|B) = P(A|B) + P(Ac |B) = 1

⇒ P(A|B) = 1− P(Ac |B)
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Probability: Radar model based on conditional probability
• Event A: An airplane is flying above
→ Ac : Nothing is flying above.

• Event B: Something registers on the radar’s screens
→ Bc : The radar is not detecting anything.

• Let P(A) = 0.05

• Let P(B |A) = 0.99 ⇒ P(Bc |A) = 1− 0.99 = 0.01

• Let P(B |Ac) = 0.1 → False alarm ⇒ P(Bc |Ac) = 1− 0.1 = 0.90

- Question:
What is the probability that an airplane is flying above when something
registers on the radar’s screen (we want to check the reliability of the radar).

P(A|B) =?
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Probability: Model based on conditional probability
• Event A: An airplane is flying above

• Event B: Something registers on the radar screens
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Probability: Model based on conditional probability

- By giving a conditional probability, can we compute P(A ∩ B) and P(B)?

P(B |A) =
P(A ∩ B)

P(A)
⇒ P(A ∩ B) = P(A).P(B |A) = (0.05)(0.99) = 0.0495

P(Ac ∩ B) = P(Ac).P(B |Ac) = (0.95)(0.1) = 0.095

P(B) = P((A ∪ Ac) ∩ B) = P((A ∩ B) ∪ (Ac ∩ B)) = P(A ∩ B) + P(Ac ∩ B)

= 0.0495 + 0.095 = 0.1445

P(A|B) =
P(A ∩ B)

P(B)
=

0.0495

0.1445
= 0.342

- The radar is not reliable: ”Most of the time there is nothing but the radar
detect a flying plane with a rate of 10% ”→ ”false alarms are pretty common”
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Probability: Bayes’s rule:(Thomas Bayes, British Mathematician, 1701-1761)
Baye’s rule:

P(A|B) =
P(B |A).P(A)

P(B)
and P(B |A) =

P(A|B).P(B)

P(A)

Proof:

P(A|B) =
P(A ∩ B)

P(B)
⇒ P(A ∩ B) = P(A|B).P(B) (1)

P(B |A) =
P(A ∩ B)

P(A)
⇒ P(A ∩ B) = P(B |A).P(A) (2)

From (1) and (2), we get

P(A|B) =
P(B |A).P(A)

P(B)
and P(B |A) =

P(A|B).P(B)

P(A)
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Probability: Bayes’s rule
- Provide us a way to update our beliefs based on the arrival of new, relevant
pieces of evidence
⇒ use prior knowledge to improve our probability estimation.

Example
- Application to the plane and radar example:

• we know P(A) (prior probabilities)

• we know P(B |A) → new information

• we know P(B |Ac) → new information

• we computed the P(B)

• we want to compute P(A|B)

P(A|B) =
P(A ∩ B)

P(B)
=

P(B |A).P(A)

P(B)
=

(0.99)× (0.05)

0.1445
= 0.342.
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Probability: Bayes’s rule
Example
- Application to the headache’s drugs example:

• We know P(A) (prior probabilities)

• We know P(B) (prior probabilities)

• We know P(C |A) → new information

• We know P(C |B) → new information

• We computed the P(C )

• We want to compute P(A|C ) and P(B |C )

P(A|C ) =
P(A ∩ C )

P(C )
=

P(C |A).P(A)

P(C )
=

(0.75)(3
5)

0.81
= 0.5556

P(B |C ) =
P(B ∩ C )

P(C )
=

P(C |B).P(B)

P(C )
=

(0.9)(2
5)

0.81
= 0.4444
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Probability: Bayes’s rule-Total Probability

- Let A1, A2, A3 be a partition of Ω (i.e; Ω = A1 ∪ A2 ∪ A3 and A1 ∩ A2 ∩ A3 = ∅).
- We know P(Ai ) → initial beliefs
- We know P(B|Ai ), for every i → New information.
- One way of computing P(B)

B = (B ∩ A1) ∪ (B ∩ A2) ∪ (B ∩ A3) → These three sets are mutually exclusive

P(B) = P(B ∩ A1) + P(B ∩ A2) + P(B ∩ A3)→ Total probability
= P(A1)P(B|A1) + P(A2)P(B|A2) + P(A3)P(B|A3)→ conditional probability

=
∑3

i=1 P(Ai )P(B|Ai ) → Total probability→ we can generalize it to n sets

- Wish to compute P(Ai |B) → revise our beliefs given that B occurs

P(Ai |B) =
P(Ai ∩ B)

P(B)
=

P(Ai )P(B|Ai )

P(B)
=

P(Ai )P(B|Ai )∑
j P(Aj)P(B|Aj)
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Probability: Bayes’s rule
- The multiplication rule:

P(A ∩ B ∩ C ) = P((A ∩ B) ∩ C )

= P(A ∩ B) P(C |(A ∩ B))

= P(A) P(B |A)︸ ︷︷ ︸ P(C |(A ∩ B))

- We can generalize the rule to n events:

P(A1 ∩ A2 ∩ . . . ∩ An) = P(A1)
n∏

i=2

P(Ai |A1 ∩ A2 ∩ . . . ∩ Ai−1)

- For n = 4,

P(A1 ∩ A2 ∩ A3 ∩ A4) = P(A1)
∏4

i=2 P(Ai |A1 ∩ A2 ∩ . . . ∩ Ai−1)
= P(A1) P(A2|A1) P(A3|A1 ∩ A2) P(A4|A1 ∩ A2 ∩ A3)

Fatima Taousser Probability and Random Variables (ECE313/ECE317)



Probability: Independence
Intuitively: Independence between two events stand for the fact that the first
event, whether it occurred or not, doesn’t give you any more information and
does not cause you to change your beliefs about the second event.

P(A|B) = P(A) and P(B |A) = P(B)

- If A and B are independent, so we have:

P(A|B) =
P(A ∩ B)

P(B)
= P(A) ⇒ P(A ∩ B) = P(A).P(B)

And

P(B |A) =
P(A ∩ B)

P(A)
= P(B) ⇒ P(A ∩ B) = P(A).P(B)

- Definition of independence: P(A ∩ B) = P(A).P(B)
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Probability: Independence
Example 1:

1) Tossing a coin one time → |Ω| = 2→ {H ,T} → P(H) = P(T ) =
1

2
= 0.5

2) Tossing a coin two time

|Ω| = 4→ {(H ,T ), (T ,H), (H ,H), (T ,T )} → P(H ,H) =
1

4
= 0.25

P(H ,H) = P(H).P(H) = 0.5× 0.5 = 0.25

- Getting H at the 2nd tossing is independent of getting H at the 1st tossing
3) Tossing a coin three time

|Ω| = 8→ {(H ,H ,H), (H ,H ,T ), . . . , (T ,T )} → P(H ,H ,H) =
1

8
= 0.125

P(H ,H ,H) = P(H).P(H).P(H) = 0.5× 0.5× 0.5 = 0.125

- Getting H at the 3nd tossing is independent of getting H at the 2nd tossing
and independent of getting H at the 1st tossing
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Probability: Independence
Example 2: There are two groups:
• A member of each group gets randomly chosen for the winners circle,
• Then one of those gets randomly chosen to get the big money prize

- What is your chance of winning the big prize?

B There is
1

5
of chance to go to the winners circle and

1

2
of chance to win the big prize.

→ So the probability of winning the big prize is
1

5
followed by

1

2
which makes:

P(winning the big prize) =
1

5
× 1

2
=

1

10
= 0.1

B Being selected at the first time and being selected the second time are two independent
events. Fatima Taousser Probability and Random Variables (ECE313/ECE317)



Probability: Independence
Example 3:
A card is chosen at random from a deck of 52 cards. Let these two different experiments:

1) The chosen card is replaced and a second card is chosen
2) The chosen card is not replaced and a second card is chosen

What is the probability of choosing a jack and then an eight for each case?

1) P(jack) =
4

52
, P(8) =

4

52

P(jack ∩ 8) = P(jack).P(8) =
4

52
× 4

52
=

16

2704
=

1

169
→ independent events

2) P(jack) =
4

52
, P(8) =

4

51

P(jack ∩ 8) = P(jack).P(8) =
4

52
× 4

51
=

16

2652
→ independent events
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Probability: Independence
Example 4: Researchers surveyed recent graduates of two different universities about their
annual incomes. The following two-way table displays data for the 300 graduates who
responded to the survey (prior information).

B Form this set of data we can compute the following probabilities

University A University B Total

< $20K = E1 P(E1 ∩ A) =
36

300
P(E1 ∩ B) =

24

300
P(E1) =

36 + 24

300
=

60

300

$20K − $39.99 = E2 P(E2 ∩ A) =
109

300
P(E2 ∩ B) =

56

300
P(E2) =

109 + 56

300
=

165

300

≥ $40K = E3 P(E3 ∩ A) =
35

300
P(E3 ∩ B) =

40

300
P(E3) =

35 + 40

300
=

75

300

Total P(A) =
180

300
P(B) =

120

300
1

Are the events ”income is $40 K and over” and ”attended University B” independent?
• Method1:

P($40 K and over) =
75

300
= 0.25, P($40 K and over|B) =

|($40 K and over ∩ B)|
|B|

=
40

120
= 0.33

⇒ P($40 and over|B) 6= P($40 and over) → They are not independent.

• Method2: P($40 and over) =
75

300
= 0.25, P(B) =

120

300
= 0.4,

P($40 and over ∩ B) =
40

300
= 0.13 ⇒ P($40 and over)P(B) = 0.1 6= P($40 and over ∩ B)
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Probability: Independence

University A University B Total

< $20K = E1 P(E1 ∩ A) =
36

300
P(E1 ∩ B) =

24

300
P(E1) =

36 + 24

300
=

60

300

$20K − $39.99 = E2 P(E2 ∩ A) =
109

300
P(E2 ∩ B) =

56

300
P(E2) =

109 + 56

300
=

165

300

≥ $40K = E3 P(E3 ∩ A) =
35

300
P(E3 ∩ B) =

40

300
P(E3) =

35 + 40

300
=

75

300

Total P(A) =
180

300
P(B) =

120

300
1

- Are the events ”income is $40 K and over (E3)” and ”attended University B” independent?
• Method1:

P(E3) =
75

300
= 0.25, P(E3|B) =

P(E3 ∩ B)

P(B)
=

40

120
= 0.33

⇒ P(E3|B) 6= P(E3) → They are not independent.
• Method2: P(E3) = 75

300 = 0.25, P(B) = 120
300 = 0.4,

P(E3 ∩ B) =
40

300
= 0.13 6= P(E3).P(B) = 0.1 → They are not independent.
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Probability: Independence

- If A and B are independent, then A and Bc are also independent.

A = (A ∩ B) ∪ (A ∩ Bc) → and these two sets are disjoints

P(A) = P[(A∩B)∪(A∩Bc)] = P(A∩B)+P(A∩Bc) = P(A).P(B)︸ ︷︷ ︸
Independence

+P(A∩Bc)

⇒ P(A ∩ Bc) = P(A)− P(A) P(B) = P(A)[1− P(B)] = P(A) P(Bc)

→ Which conclude the independence of A and Bc .
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Probability: Independence

- If A and B are independent, then Ac and Bc are also independent.

P(Ac ∩ Bc) = P[(A ∪ B)c ] = 1− P(A ∩ B) = 1− [P(A) + P(B)− P(A ∩ B)]

= 1− P(A)− P(B) + P(A ∩ B)︸ ︷︷ ︸
=P(A).P(B)

= 1− P(A)− P(B) + P(A).P(B)

⇒ P(Ac ∩ Bc) = [1− P(A)].[1− P(B)] = P(Ac).P(Bc)

→ Which conclude the independence of Ac and Bc .
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Probability: Independence

Independence of a collection of events:
- Events A1,A2, . . . ,An are called independents if

P(Ai ∩ Aj ∩ . . .Am) = P(Ai)P(Aj) . . .P(Am) for any distinct indices i,j, . . . , m

- For n = 3
• P(A1 ∩ A2) = P(A1)P(A2)

• P(A1 ∩ A3) = P(A1)P(A3)

• P(A2 ∩ A3) = P(A2)P(A3)


⇒ pairwise independent

• P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3)
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Probability: Conditional independence
B Two events A and B are conditionally independent given an event C with P(C ) > 0 if

P(A∩B|C ) = P(A|C ) P(B|C )

Example:
A box contains two coins: a regular coin (C1) and one fake two-headed coin (C2) (i.e;
(P(H) = 1)). I choose a coin at random and toss it twice. Define the following events.
• A= First coin toss results in a H.
• B= Second coin toss results in a H.
• C1= regular coin has been selected.
• C2 = fake coin has been selected.
- Find P(A|C1),P(B|C1),P(A ∩ B|C1),P(A ∩ B|C2),P(A),P(B), and P(A ∩ B).
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Probability: Conditional independence
Solution: We have the following information: C1:{H, T}, C2:{H}

P(C1) =
1

2
, P(C2) =

1

2
, P(A|C1) =

1

2
, P(B|C1) =

1

2
, P(A|C2) = 1, P(B|C2) = 1

P(A ∩ B|C1) =
1

2
.
1

2
=

1

4
, P(A ∩ B|C2) = 1

regular coin (C1) fake coin (C2)

A P(A ∩ C1) = P(A|C1).P(C1) =
1

4
P(A ∩ C2) = P(A|C2).P(C2) =

1

2
P(A) =

3

4

B P(B ∩ C1) = P(B|C1).P(C1) =
1

4
P(B ∩ C2) = P(B|C2).P(C2) =

1

2
P(B) =

3

4

• P(A ∩ B|C1) =
1

4
= P(A|C1).P(B|C1) =

1

2
.
1

2
=

1

4
• P(A ∩ B|C2) = 1 = P(A|C2).P(B|C2) = 1× 1 = 1
⇒ A and B are independent by knowing the chosen coin (conditionally independent)
- Let us compare P(A ∩ B) and P(A).P(B). We have

P(A) = P(A ∩ C1) + P(A ∩ C2) =
3

4
, P(B) = P(B ∩ C1) + P(B ∩ C2) =

3

4
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Probability: Conditional independence
regular coin (C1) fake coin (C2)

A P(A ∩ C1) = P(A|C1).P(C1) =
1

4
P(A ∩ C2) = P(A|C2).P(C2) =

1

2
P(A) =

3

4

B P(B ∩ C1) = P(B|C1).P(C1) =
1

4
P(B ∩ C2) = P(B|C2).P(C2) =

1

2
P(B) =

3

4

P(A ∩ B) = P(A ∩ B ∩ C1) + P(A ∩ B ∩ C2)

= P((A ∩ B)|C1).P(C1) + P((A ∩ B)|C2).P(C2)

=
1

4
.
1

2
+ 1.

1

2
=

5

8

B As we see

P(A ∩ B) =
5

8
6=P(A).P(B) =

3

4
.
3

4
=

9

16

⇒ A and B are NOT independent (or dependent) since P(A ∩ B) depend on the chosen
coin, but they are conditionally independent knowing in advance which coin is tossed.
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Probability: Conditional independence
- Assume A and B are independent. If we told that C occurred, are A and B still
independent? → we can have two events that they are independent but not
conditionally independent given an event C.

Example: Consider the rolling of a die → Ω = {1, 2, 3, 4, 5, 6}. Let the following events

A = {1, 2}, B = {2, 4, 6}, C = {1, 4} → P(A) =
2

6
=

1

3
, P(B) =

3

6
=

1

2
, P(C ) =

2

6
=

1

3

P(A ∩ B) = P({2}) =
1

6
= P(A).P(B) =

1

3
.
1

2
=

1

6
→ A and B are independent

P(A ∩ B|C ) =
P(A ∩ B ∩ C )

P(C )
=

P(∅)
P(C )

= 0

P(A|C ) =
P(A ∩ C )

P(C )
=
|A ∩ C |
|C |

=
1

2
6= 0 and P(B|C ) =

P(B ∩ C )

P(C )
=
|B ∩ C |
|C |

=
1

2
6= 0

⇒ P(A ∩ B|C ) 6= P(A|C ) P(B|C ) ⇒ They are not conditionally independent
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Probability: Conditional independence

B A and B are conditionally independent knowing C, means that if a given
knowledge that C occurs, so A and B becomes independent (i.e; knowledge of
whether A occurs provides no information on the likelihood of B occurring,
and knowledge of whether B occurs provides no information on the likelihood
of A occurring).
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Probability: Conditional independence
Properties: Let the following properties
B Suppose that A and B are conditionally independent knowing that the event C occurs:

P(A ∩ B|C ) =
P(A ∩ B ∩ C )

P(C )
= P(A|C ).P(B|C )︸ ︷︷ ︸

conditional independence

.

B We can deduce the following properties:

1) P(A ∩ Bc |C ) = P(A|C ).P(Bc |C )

- We have P(A ∩ Bc |C ) =
P(A ∩ Bc ∩ C )

P(C )
. On the other hand

P(A∩C ) = P(A∩C∩B)+P(A∩C∩Bc)⇒ P(A ∩ C )

P(C )
=

P(A ∩ C ∩ B)

P(C )
+
P(A ∩ C ∩ Bc)

P(C )

⇒ P(A|C ) = P(A ∩ B|C ) + P(A ∩ Bc |C )⇒ P(A|C ) = P(A|C ).P(B|C ) + P(A ∩ Bc |C )

⇒ P(A ∩ Bc |C ) = P(A|C )−P(A|C ).P(B|C ) = P(A|C )[1−P(B|C )] = P(A|C ).P(Bc |C )
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Probability: Conditional independence

2) P(Ac ∩ B|C ) = P(Ac |C ).P(B|C )

P(Ac ∩ B|C ) =
P(Ac ∩ B ∩ C )

P(C )

On the other hand

P(B∩C ) = P(B∩C∩A)+P(B∩C∩Ac)⇒ P(B ∩ C )

P(C )
=

P(B ∩ C ∩ A)

P(C )
+
P(B ∩ C ∩ Ac)

P(C )

⇒ P(B|C ) = P(A∩B|C ) + P(Ac ∩B|C )⇒ P(B|C ) = P(A|C ).P(B|C ) + P(Ac ∩B|C )

⇒ P(Ac ∩ B|C ) = P(B|C )−P(A|C ).P(B|C ) = P(B|C )[1−P(A|C )] = P(B|C ).P(Ac |C )
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Probability: Conditional independence
3) P(Ac ∩ Bc |C ) = P(Ac |C ).P(Bc |C )

P(Ac ∩ Bc |C ) = P((A ∪ B)c |C )
= 1− P((A ∪ B)c |C )

= 1− P((A ∪ B) ∩ C )

P(C )

= 1− P((A ∩ C ) ∪ (B ∩ C ))

P(C )

= 1− P(A ∩ C ) + P(B ∩ C )− P(A ∩ B ∩ C )

P(C )

= 1− P(A ∩ C )

P(C )
− P(B ∩ C )

P(C )
+

P(A ∩ B ∩ C )

P(C )
= 1− P(A|C )− P(B|C ) + P(A ∩ B|C )
= 1− P(A|C )− P(B|C ) + P(A|C ).P(B|C )
= [1− P(A|C )].[1− P(B|C )]

= P(Ac |C ).P(Bc |C )
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Probability: Independence
- Don’t confuse independence and disjoints:

• A ∩ B = ∅ ⇒ P(A ∩ B) = 0⇒ P(A|B) =
P(A ∩ B)

P(B)
= 0→ It is an impossible event →

But P(A) 6= 0 and P(B) 6= 0 ⇒ P(A).P(B) 6= 0 ⇒ P(A ∩ B) 6= P(A).P(B)→ These events
are disjoints but dependent
• If A and B are independent they should not be disjoint

• P(∅|B) =
P(∅ ∩ B)

P(B)
=

P(∅)
P(B)

=
0

P(B)
= 0 = P(∅) → The impossible event is

independent to all events and disjoint with all events
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Probability: Independence

• Suppose that we have one baby (B1) and consider the colors {Blue, Green, Brown}.
- Event B: The baby has blue eyes → P(B) = 1

3
- Event G: The baby has green eyes → P(G ) = 1

3
- Event R: The baby has brown eyes → P(R) = 1

3

B ∩ G ∩ R = ∅ → the baby cannot has all these colors at the same time → disjoints

P(G |B) = 0 6= P(G ) → dependent ⇒ The occurrence of the event B will affect the
occurrence of the event G. → if we know that the baby has blue eyes, so G and R cannot
happen.
• Suppose that we have two babies (B1) and (B2) → The color of the eyes of the two
babies are independent (can be dependent if we will add more information) but they are
not disjoints → the two babies can have the same color of eyes.

Fatima Taousser Probability and Random Variables (ECE313/ECE317)



Probability: Independence
- Independent vs disjoint events:
B Events are considered disjoint if they never occur at the same time. Events are
considered independent if they are unrelated.
B Example1: Flipping a Coin
- Scenario 1: Suppose we flip a coin once → Ω = {H,T}. Let the events:
A: The coin landing on head = {H} → P(A) = 1

2
B: The coin landing on tail = {T} → P(B) = 1

2
• Event A and event B are disjoint (A ∩ B = ∅) → the coin can’t possibly land on heads
and tails at the same time, but they are dependent since P(A|B) = 0 6= P(A).P(B).
- Scenario 2: Suppose we flip a coin twice → Ω = {HH,TH,HT ,TT}. Let the events
A: The coin landing on head on the first flip = {HH,HT} → P(A) = 2

4 = 1
2

B: The coin landing on head on the second flip = {HH,TH} → P(B) = 2
4 = 1

2
• Event A and event B are not disjoints and they are independent because the outcome of
one coin flip doesn’t affect the outcome of the other.

P(A∩B) = P({HH}) =
1

4
= P(A).P(B) =

1

2
.
1

2
or P(A|B) =

P(A ∩ B)

P(B)
=

1
4
1
2

=
1

2
= P(A)
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Probability: Independence
B Example2: Rolling a Dice
Scenario 1: Suppose we roll a dice once → Ω = {1, 2, 3, 4, 5, 6}. Let

A: The dice lands on an even number = {2,4,6} → P(A) =
3

6
=

1

2

B: The dice lands on an odd number = {1,3,5} → P(B) =
3

6
=

1

2
• Event A and event B are disjoint because the dice can’t possibly land on an even number
and an odd number at the same time but they are dependent since if A occurs B cannot
occur → P(A|B) = 0 6= P(A).P(B).
- Scenario 2: Suppose we roll a dice twice. Let
A: The dice lands on a “5” on the first roll
B: The dice lands on a “5” on the second roll
• Event A and event B are not disjoints but they are independent because the outcome of
one dice roll doesn’t affect the outcome of the other.

P(A) =
6

36
=

1

6
, P(B) =

6

36
=

1

6
, P(A ∩ B) = P(5, 5) =

1

36
=

1

6
.
1

6
= P(A).P(B)
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Examples- Training
Example 1: We throw 2 dice → Ω = {(1, 1), (1, 2), . . . , (6, 6)} → 36 elements. Compute

1) P(sum of 2 faces is 9)
2) P(sum of 2 faces is 9|the first face is 4)

Solution:
1) Without prior information:

P(sum of 2 faces is 9) = P({(3, 6), (6, 3), (4, 5), (5, 4)}) =
4

36
=

1

9

2) With additional information: If first face is 4. Then

P(first face is 4) = P({(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)}) =
6

36
=

1

6

P(sum of 2 faces is 9|the first face is 4) =
P({sum of 2 faces is 9} ∩ {the first face is 4})

P(first face is 4)

P[(4, 5)]
1
6

=
1

36
1
6

=
1

6

- With additional information, probability of having sum= 9 becomes
1

6
.
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Examples- Training
Example 2:
An urn contain 8 red and 4 white balls. We draw 2 balls without replacement. Let

R1 = 1st ball drawn is red

R2 = 2nd ball drawn is red

- Find P(R1 ∩ R2)
- Find P(R2)
Solution: Information that we can collect are:

P(R1) =
8

12
=

2

3
, P(R1c) =

4

12
, P(R2|R1) =

7

11
, P(R2|R1c) =

8

11
.

P(R1 ∩ R2) = P(R2|R1).P(R1) =
7

11
.
2

3
=

14

33
= 0.42

P(R2) = P(R2∩R1)+P(R2∩R1c) = P(R1).P(R2|R1)︸ ︷︷ ︸
8

12
.

7

11

+P(R1c).P(R2|R1c)︸ ︷︷ ︸
4

12
.

8

11

=
88

132
= 0.66

- Note that P(R1 ∩ R2) = 0.42 6= P(R1).P(R2) = 0.44 → These events are dependent
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Examples- Training
B We can construct the following table:

P(R1) =
2

3
, P(Rc

1 ) =
1

3
, P(R2|R1) =

7

11
, P(R2|R1c) =

8

11
, P(Rc

2 |R1) =
4

11
, P(Rc

2 |Rc
1 ) =

3

11

R1 Rc
1 Total

R2 P(R1 ∩ R2) = P(R2|R1).P(R1) = 14
33 P(Rc

1 ∩ R2) = P(R2|Rc
1 ).P(Rc

1 ) = 8
33

2

3

Rc
2 P(R1 ∩ Rc

2 ) = P(Rc
2 |R1).P(R1) =

8

33
P(Rc

1 ∩ Rc
2 ) = P(Rc

2 |Rc
1 ).P(Rc

1 ) =
3

33

1

3

Total P(R1) =
2

3
P(Rc

1 ) =
1

3
1

P(R1 ∩ R2) =
14

33
= 0.42

P(R2) = P(R2 ∩ R1) + P(R2 ∩ R1c) =
2

3
= 0.66, P(R1) =

2

3

P(R1 ∩ R2) =
14

33
6= P(R1).P(R2) =

2

3
.
2

3
=

4

9
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Examples- Training
Example 3:
An urn contain 8 Red and 4 White balls. We draw 2 balls with replacement. Let
R1 = 1st ball drawn is red
R2 = 2nd ball drawn is red

- Find P(R1 ∩ R2)
- Find P(R2)
Solution: Information that we can collect are:

P(R1) =
8

12
=

2

3
, P(R2|R1) =

8

12
=

2

3
, P(R1c) =

4

12
, P(R2|R1c) =

8

12
.

P(R1 ∩ R2) = P(R1).P(R2|R1) =
8

12
.

8

12
=

2

3
.
2

3
=

4

9
= 0.44

P(R2) = P(R2 ∩ R1) + P(R2 ∩ R1c) = P(R1).P(R2|R1)︸ ︷︷ ︸
8

12
.

8

12

+P(R1c).P(R2|R1c)︸ ︷︷ ︸
4

12
.

8

12

=
2

3
= 0.66

- Note that P(R1 ∩ R2) = 0.44 = P(R1).P(R2) =
2

3
.
2

3
= 0.44 → These events are

independent.
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Examples- Training
B We can construct the following table:

P(R1) =
2

3
, P(Rc

1 ) =
1

3
, P(R2|R1) =

2

3
, P(R2|R1c) =

2

3
, P(Rc

2 |R1) =
1

3
, P(Rc

2 |Rc
1 ) =

1

3

R1 Rc
1 Total

R2 P(R1 ∩ R2) = P(R2|R1).P(R1) = 4
9 P(Rc

1 ∩ R2) = P(R2|Rc
1 ).P(Rc

1 ) = 2
9

2

3

Rc
2 P(R1 ∩ Rc

2 ) = P(Rc
2 |R1).P(R1) =

2

9
P(Rc

1 ∩ Rc
2 ) = P(Rc

2 |Rc
1 ).P(Rc

1 ) =
1

9

1

3

Total P(R1) =
2

3
P(Rc

1 ) =
1

3
1

P(R1 ∩ R2) =
4

9
= 0.44

P(R2) = P(R2 ∩ R1) + P(R2 ∩ R1c) =
2

3
, P(R1) =

2

3

P(R1 ∩ R2) =
4

9
= P(R1).P(R2) =

2

3
.
2

3
=

4

9
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Examples- Training

Example 4:
An insurance company divides its customers into three classes
R1, R2 and R3 : good risks, medium risks, and bad risks, respectively. The numbers of
these three classes represent 20% of the total population for the class R1, 50% for the class
R2 and 30% for the class R3. Statistics indicate that the probabilities of having an accident
during the year for a person in one of these three classes are respectively 0.05, 0.15 and
0.30.

1) What is the probability that a randomly selected person from the population has an
accident during the year?

2) If Mr. Martin has not had an accident this year, what is the likelihood that he is a
good risk?

3) Are the class of risks independent on having an accident during the year?
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Examples- Training
Example 4- Solution- (Method 1)
• Event R1: good risk → P(R1) = 0.2
• Event R2: medium risk → P(R2) = 0.5
• Event R3: bad risk → P(R1) = 0.3
• Event A: ”having an accident”.

P(A|R1) = 0.05 = 5%, P(A|R2) = 0.15 = 15%, P(A|R3) = 0.3 = 30%

Have an accident (A) Don’t have an accident (Ac) Total
R1 P(A ∩ R1) = P(A|R1).P(R1) = 0.01 P(Ac ∩ R1) = P(Ac |R1).P(R1) = 0.19 0.2
R2 P(A ∩ R2) = P(A|R2).P(R2) = 0.075 P(Ac ∩ R2) = P(Ac |R2).P(R1) = 0.425 0.5
R3 P(A ∩ R3) = P(A|R3).P(R3) = 0.09 P(Ac ∩ R3) = P(Ac |R3).P(R3) = 0.21 0.3

Total 0.175 0.825 1

1) P(A) = 0.175

2) P(R1|Ac) =
P(R1 ∩ Ac)

P(Ac)
=

0.19

0.825
= 0.2303

3) The class of risks dependent on having an accident during the year, since

P(A|R1) = 0.05 6= P(A) = 0.175, P(A|R2) = 0.15 6= P(A), P(A|R3) = 0.3 6= P(A)
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Examples- Training
Example 4- Solution (Method 2)
• Event R1: good risk → P(R1) = 0.2
• Event R2: medium risk → P(R2) = 0.5
• Event R3: bad risk → P(R1) = 0.3
• Event A: ”having an accident”.

P(A|R1) = 0.05 = 5%, P(A|R2) = 0.15 = 15%, P(A|R3) = 0.3 = 30%
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Examples- Training

1) What is the probability that a randomly selected person from the population has an
accident during the year?

P(A) = P(A ∩ R1) + P(A ∩ R2) + P(A ∩ R3)

= P(A|R1)P(R1) + P(A|R2)P(R2) + P(A|R3)P(R3)

= (0.05× 0.2) + (0.15× 0.5) + (0.3× 0.3)

= 0.01 + 0.075 + 0.09 = 0.175
Fatima Taousser Probability and Random Variables (ECE313/ECE317)



Examples- Training

2) If Mr. Martin has not had an accident this year, what is the likelihood that he is a
good risk?

P(R1|Ac) =
P(R1 ∩ Ac)

P(Ac)
=

P(Ac |R1)P(R1)

P(Ac)
=

(1− P(A|R1))P(R1)

1− P(A)

=
(1− 0.05) 0.2

1− 0.175
=

0.19

0.825
= 0.2303

3) The class of risks dependent on having an accident during the year, since

P(A|R1) = 0.05 6= P(A) = 0.175, P(A|R2) = 0.15 6= P(A), P(A|R3) = 0.3 6= P(A)
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Examples- Training
Example 5:
In the teachers’ room 60% are women and 40% are men; one in three women wears glasses
and one in two men wears glasses:
- what is the probability that a random eyeglass wearer is a woman?
Example 5-Solution (Method 1):
• Event W:{The teacher is a woman} → P(W ) = 0.6
• Event M:{The teacher is a man} → P(M) = 0.4

• Event G:{wears glasses} → P(G |W ) =
1

3
, P(G |M) =

1

2
Wears glasses (G) Don’t wear glasses (Gc) Total

Woman (W) P(W ∩ G ) = P(G |W ).P(W ) = 0.2 P(W ∩ G c) = 0.6− 0.2 = 0.4 0.6
Man P(M ∩ G ) = P(G |M).P(M) = 0.2 P(M ∩ G c) = 0.4− 0.2 = 0.2 0.4
Total 0.4 0.6 1

- What is the probability that a random eyeglass wearer is a woman?

P(W |G ) =
P(W ∩ G )

P(G )
=

0.2

0.4
= 0.5
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Examples- Training
Example 5-Solution (Method 2):

- What is the probability that a random eyeglass wearer is a woman?

P(W |G ) =
P(W ∩ G )

P(G )
=

P(G |W )P(W )

P(G )

- We need to compute P(G ):

⇒ P(G ) = P(G∩W )+P(G∩M) = P(G |W )P(W )+P(G |M)P(M) =
0.6

3
+

0.4

2
= 0.2+0.2 = 0.4

⇒ P(W |G ) =
P(G |W )P(W )

P(G )
=

0.2

0.4
= 0.5
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Examples- Training

Example 6: Weather Forecasting
One of the most common real life examples of using conditional probability is
weather forecasting.
B Suppose the following two probabilities are known:
• P(cloudy) = 0.25
• P(rainy ∩ cloudy) = 0.15

P(rainy|cloudy) =
P(rainy ∩ cloudy)

P(cloudy)
=

0.15

0.25
= 0.6→ 60%
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Examples- Training

Example 7: Sports Betting
Conditional probability is frequently used by sports betting companies to
determine the odds they should set for certain teams to win certain games.
B Suppose the following two probabilities are known about some basketball
team:
• P(Team A star player is hurt) = 0.15
• P(Team A wins ∩ Team A start player is hurt) = 0.02

P(Team A wins|Team A start player is hurt) =

P(Team A wins ∩ Team A start player is hurt)

P(Team A start player is hurt)
=

0.02

0.15
= 0.13→ 13%
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Examples- Training
Example 8: Suppose that we have the following prior information

Have pets (P) Do not have pets (Pc) Total
Male (M) 0.41 0.08 0.49

Female (F) 0.45 0.06 0.51
Total 0.86 0.14 1

- What is the probability that a randomly selected person is male, knowing

that he own a pet? (i.e; P(M |P) =
P(M ∩ P)

P(P)
=?)

• P(M ∩ P) = 0.41
• P(P) = P(P ∩M) + P(P ∩ F ) = 0.41 + 0.45 = 0.86

• P(M |P) =
P(M ∩ P)

P(P)
=

0.41

0.86
= 0.4767

• P(M |P) = 0.4767 6= P(M) = 0.49 → M and P are not independent
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Examples- Training
B Reliability:
Real-life systems often are composed of several components. For example, a system may
consist of two components that are connected in parallel as shown in Figure 1, or in series
as shown in Figure 2.
• Parallel connection: When the system’s components are connected in parallel, the
system works if at least one of the components is functional.
• Series connection: When the system’s components are connected in series, the system
works if all of the components are functional.

- Let the event S: ”The system is functional”
- Parallel case → S = {C1 OR C2 are functional} ⇒ S = C1 ∪ C2.
- Series case → S = {C1 AND C2 are functional} ⇒ S = C1 ∩ C2.
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Examples- Training
Example 9:
In a factory, two machines M1 and M2 are used jointly to manufacture
cylindrical parts. These machines are connected in series or in parallel.

B For a given period, their probabilities of breaking down are respectively 0.01
and 0.008. Moreover, the probability of the event “the machine M2 is down
knowing that M1 is down” is equal to 0.4.

1. What is the probability of having both machines down at the same time?

2. What is the probability that the manufacture in parallel case is working?

3. What is the probability that the manufacture in series case is working?
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Examples- Training
Example 9-Solution
• Event A1: {Machine M1 is breaking down} → P(A1) = 0.01
• Event A2: {Machine M2 is breaking down} → P(A2) = 0.008
• The probability of the event “the machine M2 is down knowing that M1 is
down” is equal to 0.4 ⇒ P(A2|A1) = 0.4.

1. What is the probability of having both machines down at the same time?

P(A1 ∩ A2) = P(A2|A1) P(A1) = (0.01)(0.4) = 0.004

2. What is the probability that manufacture in parallel case is working?

P(Ac
1 ∪ Ac

2) = P((A1 ∩ A2)c) = 1− P(A1 ∩ A2) = 1− 0.004 = 0.996.

3. What is the probability that the manufacture in series case is working?

P(Ac
1 ∩ Ac

2) = P(Ac
1) + P(Ac

2)− P(Ac
1 ∪ Ac

2)

= (1− 0.01) + (1− 0.008)− 0.996 = 0.986
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B We can construct the following table according to the given information:

P(A1) = 0.01, P(A2) = 0.008, P(A2|A1) = 0.4

P(Ac
1 ∩ A2) = 0.008− 0.004 = 0.004

P(Ac
2 ∩ A1) = P(Ac

2|A1).P(A1) = [1− P(A2|A1)].P(A1) = 0.6× 0.01 = 0.006

P(Ac
1 ∩ Ac

2) = 0.992− 0.006 = 0.992

A1 Ac
1 Total

A2 P(A1 ∩ A2) = P(A2|A1).P(A1) = 0.004 P(Ac
1 ∩ A2) = 0.004 0.008

Ac
2 P(Ac

2 ∩ A1) = P(Ac
2|A1).P(A1) = 0.006 P(Ac

1 ∩ Ac
2) = 0.986 0.992

Total 0.01 0.99 1
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Example 10: Consider the following systems and assume that component k is functional
with probability Pk and it is independent to other components.
- Compute the probability that the system is functional in each of the following cases:

(1) S = C1 ∪ C2 ∪ C3

(2) S = C1 ∩ C2 ∩ C3

(3) S = C3 ∩ (C1 ∪ C2)
(4) S = (C1 ∩ C2) ∪ C3

(5) S = C5 ∩ [(C1 ∩ C2) ∪ (C3 ∩ C4)]
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Example 10: Reliability

(1) P(S) = P(C1 ∪ C2 ∪ C3)
= P(C1) + P(C2) + P(C3)− P(C1 ∩ C2)− P(C1 ∩ C3)− P(C2 ∩ C3) + P(C1 ∩ C2 ∩ C3)
= P1 + P2 + P3 − P1P2 − P1P3 − P2P3 + P1P2P3 = 1− [(1− P1).(1− P2).(1− P3)]
= 1− P(C c

1 ∩ C c
2 ∩ C c

3 )→ S = (C c
1 ∩ C c

2 ∩ C c
3 )c

(2) P(S) = P(C1 ∩ C2 ∩ C3) = P1.P2.P3

(3) P(S) = P(C3 ∩ (C1 ∪ C2)) = P((C3 ∩ C1) ∪ (C3 ∩ C2))
= P(C3 ∩ C1) + P(C3 ∩ C2)− P(C3 ∩ C1 ∩ C2) = P3P1 + P3P2 − P1P2P3

P3(P1 + P2 − P1P2) = P3.[1− (1− P1)(1− P2)]

(4) P(S) = P((C1∩C2)∪C3) = P(C1∩C2)+P(C3)−P(C1∩C2∩C3) = P1P2 + P3 − P1P2P3

P1P2(1− P3) + P3 → S = (C1 ∩ C2 ∩ C c
3 ) ∪ C3

(5) P(S) = P(C5 ∩ [(C1 ∩ C2) ∪ (C3 ∩ C4)]) = P(S) = P[(C5 ∩ C1 ∩ C2) ∪ (C5 ∩ C3 ∩ C4)]
= P(C5 ∩ C1 ∩ C2) + P(C5 ∩ C3 ∩ C4)− P(C5 ∩ C1 ∩ C2 ∩ C3 ∩ C4)
= P5P1P2 + P5P3P4 − P5P1P2P3P4 = P5[P1P2 + P3P4 − P1P2P3P4]
= P5[1− (1− P1P2)(1− P3P4)]
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B Bayesian network / conditional independence from graphs

• We know: P(C ), P(A|C ), P(B|C ) and A and B are conditionally independent

P(A ∩ B ∩ C ) = P(A ∩ B|C ).P(C ) → Bayes rule
= P(A|C ).P(B|C )︸ ︷︷ ︸

conditional independence

.P(C )

P(A ∩B ∩ C ) = P(A|C ).P(B|C ).P(C )

• P(A ∩ B) = P(A ∩ B ∩ C ) + P(A ∩ B ∩ C c) → total probability
= P(A|C ).P(B|C ).P(C ) + P(A|C c).P(B|C c).P(C c)
6= P(A).P(B)→ A and B are not independent

(A ⊥⊥ B)|C But A ⊥6⊥ B
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Examples-Training
B Bayesian network / conditional independence from graphs

• We know: P(A), P(C |A), P(B|C ) and A and B are conditionally independent

P(A ∩ B ∩ C ) = P(B|A ∩ C ).P(A ∩ C ) → Bayes rule
= P(B|C )︸ ︷︷ ︸

conditional independence

.P(C |A).P(A)︸ ︷︷ ︸
Bayes rule

P(A ∩B ∩ C ) = P(A).P(C |A).P(B|C )

• P(A ∩ B) = P(A ∩ B ∩ C ) + P(A ∩ B ∩ C c) → total probability
= P(A).P(C |A).P(B|C ) + P(A).P(C c |A).P(B|C c)
6= P(A).P(B)→ A and B are not independent

(A ⊥⊥ B)|C But A ⊥6⊥ B
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Examples-Training
B Bayesian network / conditional independence from graphs

• We know: P(A), P(B), P(C |(A ∩ B)) and A and B are independent

P(A ∩ B ∩ C ) = P(C |A ∩ B).P(A ∩ B) → Bayes rule
= P(C |(A ∩ B)).P(A).P(B)

P(A ∩B ∩ C ) = P(C |(A ∩ B)).P(A).P(B)

• P((A ∩ B)|C ) =
P(A ∩ B ∩ C )

P(C )
→ Bayes rule

=
P(C |(A ∩ B)).P(A).P(B)

P(C )

6= P(A ∩ C )

P(C )
+

P(B ∩ C )

P(C )
= P(A|C ).P(B|C )

A ⊥⊥ B But (A ⊥6⊥ B)|C
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Example 11: Suppose the event A and the event B are conditionally independent knowing
C, and they are conditionally independent knowing C c such that P(C ) = 0.7,
P(A|C ) = 0.4, P(B|C ) = 0.6, P(A|C c) = 0.3 and P(B|C c) = 0.2. Show whether or not the
pair {A,B} is independent.
Solution:
B We can construct the following table according to the information provided to us

A B
C P(A ∩ C ) = P(A|C ).P(C ) = 0.28 P(B ∩ C ) = P(B|C ).P(C ) = 0.42 0.7
C c P(A ∩ C c) = P(A|C c).P(C c) = 0.09 P(B ∩ C c) = P(B|C c).P(C c) = 0.06 0.3

0.37 0.48

- Note that, in this case A and B do not complete each other ⇒ P(A) + P(B) 6= 1
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P(A) = P(A ∩ C ) + P(A ∩ C c) = 0.37

P(B) = P(B ∩ C ) + P(B ∩ C c) = 0.48

P(A ∩ B) = P(A ∩ B ∩ C ) + P(A ∩ B ∩ C c)

= P(A ∩ B|C ).P(C ) + P(A ∩ B|C c).P(C c)

= P(A|C ).P(B|C )︸ ︷︷ ︸
conditional independence

.P(C ) + P(A|C c).P(B|C c)︸ ︷︷ ︸
conditional independence

.P(C c)

= (0.4).(0.6).(0.7) + (0.3).(0.2).(1− 0.7) = 0.186

P(A ∩ B) = 0.186 6= P(A).P(B) = 0.177→ A and B are dependent
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Example 12: (Bayesian network with conditional probability) Let the three binary variables
– Battery B → Charged (B=1) or Dead (B=0)
– Fuel Tank F → Full (F=1) or Empty (F=0)
– Guage Electric Fuel G → Indicates Full (G=1) or Empty (G=0)
– B and F are independent with prior probabilities (i.e; P(B ∩ F ) = P(B).P(F ))

• We are given prior probabilities and one set of conditional probabilities
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1) Compute the probability that the guage reads full (i.e; P(G = 1)) and deduce the
probability that the guage reads empty (i.e; P(G = 0)).
2) If the guage reads empty (G=0), what is the probability that the fuel tank being empty
(i.e; P(F = 0|G = 0) =?).
2) If the guage reads empty (G=0), what is the probability that the battery being empty
(i.e; P(B = 0|G = 0) =?).
4) Observing both fuel guage and battery. Suppose that the guage reads empty (G=0) and
Battery is dead (B=0). What is the probability that Fuel tank is empty (i.e;
P(F = 0|G = 0 ∩ B = 0) =?).
Solution:
• B = {0, 1} = {(B = 0) ∪ (B = 1)} ⇒ P(B) = P(B = 0) + P(B = 1) = 0.1 + 0.9 = 1
• F = {0, 1} = {(F = 0) ∪ (F = 1)} ⇒ P(F ) = P(F = 0) + P(F = 1) = 0.1 + 0.9 = 1
• G = {0, 1} = {(G = 0) ∪ (G = 1)} ⇒ P(G ) = P(G = 0) + P(G = 1) = 1
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B = 1 ∩ F = 1 B = 1 ∩ F = 0 B = 0 ∩ F = 1 B = 0 ∩ F = 0 Total

G=1 0.648 0.018 0.018 0.001 0.685
G=0 0.162 0.072 0.072 0.009 0.315
Total 0.81 0.09 0.09 0.01 1

P(G = 1 ∩ B = 1 ∩ F = 1) = P(G = 1|B = 1 ∩ F = 1).P(B = 1).P(F = 1) = 0.64

P(G = 1 ∩ B = 1 ∩ F = 0) = P(G = 1|B = 1 ∩ F = 0).P(B = 1).P(F = 0) = 0.018

P(G = 1 ∩ B = 0 ∩ F = 1) = P(G = 1|B = 0 ∩ F = 1).P(B = 0).P(F = 1) = 0.018

P(G = 1 ∩ B = 0 ∩ F = 0) = P(G = 1|B = 0 ∩ F = 0).P(B = 0).P(F = 0) = 0.001

——————————————————————

P(G = 0 ∩ B = 1 ∩ F = 1) = [1− P(G = 1|B = 1 ∩ F = 1)].P(B = 1).P(F = 1) = 0.162

P(G = 0 ∩ B = 1 ∩ F = 0) = [1− P(G = 1|B = 1 ∩ F = 0)].P(B = 1).P(F = 0) = 0.072

P(G = 0 ∩ B = 0 ∩ F = 1) = [1− P(G = 0|B = 0 ∩ F = 1)].P(B = 0).P(F = 1) = 0.072

P(G = 0 ∩ B = 0 ∩ F = 0) = [1− P(G = 1|B = 0 ∩ F = 0)].P(B = 0).P(F = 0) = 0.009
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P(G = 1) = P(G = 1 ∩ B = 1 ∩ F = 1)︸ ︷︷ ︸
P(G=1|B=1∩F=1).P(B=1∩F=1)

+P(G = 1 ∩ B = 1 ∩ F = 0)︸ ︷︷ ︸
P(G=1|B=1∩F=0).P(B=1∩F=0)

+P(G = 1 ∩ B = 0 ∩ F = 1)︸ ︷︷ ︸
P(G=1|B=0∩F=1).P(B=0∩F=1)

+P(G = 1 ∩ B = 0 ∩ F = 0)︸ ︷︷ ︸
P(G=1|B=0∩F=0).P(B=0∩F=0)

=
∑
B=0,1

∑
F=0,1

P(G = 1|(B ∩ F )).P(B).P(F )

⇒ P(G = 1) = (0.8).(0.9)2 + 2(0.2).(0.1)× (0.9) + (0.1).(0.1)2 = 0.685

⇒ P(G = 0) = 1− P(G = 1) = 0.315
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2) P(F = 0|G = 0) =

P(G = 0 ∩ F = 0)

P(G = 0)

P(G = 0 ∩ F = 0) = P(G = 0 ∩ F = 0 ∩ B = 0)︸ ︷︷ ︸
P(G=0|(F=0∩B=0)).P(F=0).P(B=0)

+ P(G = 0 ∩ F = 0 ∩ B = 1)︸ ︷︷ ︸
P(G=0|(F=0∩B=1)).P(F=0).P(B=1)

= (1− 0.1).(0.1)2 + (1− 0.2).(0.1).(0.9) = 0.081

⇒ P(F = 0|G = 0) =
P(G = 0 ∩ F = 0)

P(G = 0)
=

0.081

0.315
= 0.257

- Note that, P(F = 0|G = 0) = 0.257 > P(F = 0) = 0.1

3) P(B = 0|G = 0) =
P(G = 0 ∩ B = 0)

P(G = 0)

P(G = 0 ∩ B = 0) = P(G = 0 ∩ B = 0 ∩ F = 0)︸ ︷︷ ︸
P(G=0|(F=0∩B=0)).P(F=0).P(B=0)

+ P(G = 0 ∩ B = 0 ∩ F = 1)︸ ︷︷ ︸
P(G=0|(F=1∩B=0)).P(F=1).P(B=0)

= (1− 0.1).(0.1)2 + (1− 0.2).(0.1).(0.9) = 0.081

⇒ P(B = 0|G = 0) =
P(G = 0 ∩ B = 0)

P(G = 0)
=

0.081

0.315
= 0.257
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4) P(F |G ∩ B) =

P(F ∩ G ∩ B)

P(G ∩ B)
=

P(G |F ∩ B).P(F ∩ B)

P(G |B).P(B)
=

P(G |F ∩ B).P(F ).P(B)

P(G |B).P(B)

P(F = 0|G = 0 ∩ B = 0) =
P(F = 0 ∩ G = 0 ∩ B = 0)

P(G = 0 ∩ B = 0)

=
P(G = 0|F = 0 ∩ B = 0).P(F = 0 ∩ B = 0)

P(G = 0 ∩ B = 0 ∩ F = 0) + P(G = 0 ∩ B = 0 ∩ F = 1)
=

P(G = 0|F = 0 ∩ B = 0).P(F = 0).P(B = 0)

[P(G = 0|B = 0 ∩ F = 0).P(F = 0) + P(G = 0|B = 0 ∩ F = 1).P(F = 1)].P(B = 0)

=
(1− 0.1).(0.1).(0.1)

[(1− 0.1).(0.1).(0.1)] + [(1− 0.2).(0.9).(0.1)]
=

0.009

0.009 + 0.072
= 0.1111

- Probability has decreased from 0.257 to 0.1111
- We can remark that

P(B ∩ F |G )|0 =
P(G = 0|B = 0 ∩ F = 0).P(B = 0).P(F = 0)

P(G = 0)
=

(0.9).(0.1)2

0.315
= 0.0286

6= P(B = 0|G = 0).P(F = 0|G = 0) = (0.257)2 = 0.066 → F and B are independent but
they are not conditionally independent
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Example 13: Two events can cause grass to be wet: an active sprinkler or rain. Rain has a
direct effect on the use of the sprinkler (namely that when it rains, the sprinkler usually is
not active). This situation can be modeled with a Bayesian network. Each variable has two
possible values, T (for true) and F (for false).
Let G = ”Grass wet (true/false)”, S = ”Sprinkler turned on (true/false)”, and R =
”Raining (true/false)”.

• The tables represent : P(G |R ∩ S), P(S |R) and P(R).
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• P(G = T ∩ R = T ∩ S = T ) = P(G = T |S = T ∩ R = T ).P(S = T ∩ R = T )
= P(G = T |S = T ∩ R = T ).P(S = T |R = T ).P(R = T ) = 0.99× 0.01× 0.2 = 0.002
- Using the same way of computation, we can get the following table

R = T ∩ S = T R = T ∩ S = F R = F ∩ S = F R = F ∩ S = F Total
G=T 0.002 0.158 0.288 0 0.449
G=F ≈ 0 0.0396 0.032 0.48 0.551
Total 0.002 0.1976 0.32 0.48 1

• What is the probability that it is raining, given the grass is wet? → P(R = T |G = T )

P(R = T |G = T ) =
P(R = T ∩ G = T )

P(G = T )
=

P(R = T ∩ G = T ∩ S = T ) + P(R = T ∩ G = T ∩ S = F )∑
x,y∈{T ,F} P(G = T ∩ S = x ∩ R = y)

=
0.002 + 0.1585

0.449
= 0.35725
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• We can collect the following measurements:
P(R = T ∩ S = T ) = P(S = T |R = T ).P(R = T ) = 0.01× 0.2 = 0.002
- Using the same way of computation, we can get the following table

R = T R = F Total
S=T 0.002 0.32 0.322
S=F 0.198 0.48 0.678
Total 0.2 0.8 1

• What is the probability that it is raining and the sprinkler turned on given the grass is
wet? → P(R = T ∩ S = T |G = T )

•P(R = T ∩ S = T |G = T ) =
P(R = T ∩ S = T ∩ G = T )

P(G = T )
=

0.002

0.449
= 0.0045

6= P(R = T ∩ S = T ) → R and S are conditionally dependent.
• P(S = T ∩ R = T ) = 0.002 6= P(S = T ).P(R = T ) = 0.322× 0.2 = 0.0644
→ R and S are dependent.
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Example 14:
Show that if event A and event B are independent by knowing that the event C occurs (i.e;
conditionally independent P(A ∩ B|C ) = P(A|C ).P(B|C )) we have the following
relationships:

1) P(A|B ∩ C ) = P(A|C )

2) P(A|Bc ∩ C ) = P(A|C )

3) P(Ac |B ∩ C ) = P(Ac |C )

4) P(Ac |Bc ∩ C ) = P(Ac |C )

5) P(Ac ∩ Bc |C ) = P(Ac |C ).P(Bc |C )
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Suppose that A and B are independent by knowing that the event C occurs
→ P(A ∩ B|C ) = P(A|C ).P(B|C ).

1) P(A|B ∩ C ) = P(A|C )

P(A|B ∩ C ) =
P(A ∩ B ∩ C )

P(B ∩ C )
=

P(A ∩ B|C ).P(C )

P(B|C ).P(C )
=

P(A ∩ B|C )

P(B|C )
=

P(A|C ).P(B|C )

P(B|C )

= P(A|C )

2) P(A|Bc ∩ C ) = P(A|C )

P(A|Bc∩C ) =
P(A ∩ Bc ∩ C )

P(Bc ∩ C )
=

P(A ∩ Bc |C ).P(C )

P(Bc |C ).P(C )
=

P(A ∩ Bc |C )

P(Bc |C )
=

P(A|C ).P(Bc |C )

P(Bc |C )

= P(A|C )

3) P(Ac |B ∩ C ) = P(Ac |C )

P(Ac |B∩C ) =
P(Ac ∩ B ∩ C )

P(B ∩ C )
=

P(Ac ∩ B|C ).P(C )

P(B|C ).P(C )
=

P(Ac ∩ B|C )

P(B|C )
=

P(Ac |C ).P(B|C )

P(B|C )

= P(Ac |C )
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4) P(Ac |Bc∩C ) =
P(Ac ∩ Bc ∩ C )

P(Bc ∩ C )
=

P(Ac ∩ Bc |C ).P(C )

P(Bc |C ).P(C )
=

P(Ac ∩ Bc |C )

P(Bc |C )
=

P(Ac |C ).P(Bc |C )

P(Bc |C )

= P(Ac |C )

5) P(Ac ∩ Bc |C ) = P((A ∪ B)c |C ) = 1− P((A ∪ B)c |C )

= 1− P((A ∪ B) ∩ C )

P(C )
= 1− P((A ∩ C ) ∪ (B ∩ C ))

P(C )

= 1− P(A ∩ C ) + P(B ∩ C )− P(A ∩ B ∩ C )

P(C )

= 1− P(A ∩ C )

P(C )
− P(B ∩ C )

P(C )
+

P(A ∩ B ∩ C )

P(C )
= 1− P(A|C )− P(B|C ) + P(A ∩ B|C )
= 1− P(A|C )− P(B|C ) + P(A|C ).P(B|C )
= [1− P(A|C )].[1− P(B|C )]
= P(Ac |C ).P(Bc |C )
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Axioms-Conditional probability:

1) P(A|B) =
P(A ∩ B)

P(B)
=

P(B |A)P(A)

P(B)
→ Conditional probability and

Baye’s rule

2) P(A ∩ B) = P(A|B).P(B) AND P(A ∩ B) = P(B |A).P(A)

3) A and B are independent if P(A|B) = P(A) OR P(A∩B) = P(A).P(B)

4) P(A|B) = 1− P(Ac |B)

5) P(A) = P[(A ∩�) ∪ (A ∩�c)] = P(A ∩�) + P(A ∩�c) =
P(A|�).P(�) + P(A|�c).P(�c) → The total probability
→ � can be any set)

6) A and B are independent knowing that C occurs if

P((A ∩ B)|C ) = P(A|C ).P(B |C ) → conditional independence
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