Probability and Random Variables (ECE313/ECE317)

Fatima Taousser

Departement of Electrical Engineering and Computer Sciences, UTK ftaousse@utk.edu

Fall 2023

Probability: Sample set

Probability is a law which is assigned to experiences where the result is uncertain.

- The list of all the possible outcomes is a set denoted by Ω and called the "Sample set".

Example

- Experiment: Flipping a coin with two faces: Head(H) and Tail (T)
- The set of possible outcomes $\Omega = \{H, T\}$.
- Experiment: Flipping a coin with two faces three times

$\Omega = \{HHH, HHT,HTH,HTT,THH,THT,TTH,TTT\}.$

Figure: Flipping a coin

Probability: Sample set

Example

- Experiment: Tossing a dice with 6 faces
- The set of possible outcomes $\Omega = \{1, 2, 3, 4, 5, 6\}$.
- Experiment: Tossing a dice with 6 faces, two times
- The set of possible outcomes

 $\Omega = \{(1, 1), (1, 2), \ldots, (6, 6)\} = 36$ elements (see figure)

Figure: Tossing a dice

Which outcomes are more likely to occur and which ones are less likely to occur ?

- \Rightarrow We do that by assigning probability (\mathbb{P}) to the different outcomes.
- Event: A subset of the sample space \Rightarrow Probability is assigned to events.

Figure: The terminology of set theory and probability

- \blacktriangleright The list of outcomes must be:
- Collectively exhaustive: The union of all the outcomes is the total sample set.

- Axioms: (basic properties of the probability)

$$
-\text{Nonnegativity: } \mathbb{P}(A) \ge 0
$$
\n
$$
-\text{Normalization: } \mathbb{P}(\Omega) = 1
$$
\n
$$
\Rightarrow 0 \le \mathbb{P}(A) \le 1
$$

- The likelihood of any event to occur is a number between 0 and 1,
	- 0 indicates the impossibility of the event.
	- 1 indicates the certainty of the even
- Union of events: $A \cup B$ means that "A occurs OR B occurs".
- Intersection of events: $A \cap B$ means that "A occurs AND B occurs".

 $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$

- Additivity: If $A \cap B = \emptyset$ (A and B are disjoint events), then

 $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B).$

- Consequences:

1)
$$
\Omega = \Omega \cup \emptyset
$$
, and $\Omega \cap \emptyset = \emptyset$, as a consequence:

$$
1 = \mathbb{P}(\Omega) = \mathbb{P}(\Omega \cup \emptyset) = \mathbb{P}(\Omega) + \mathbb{P}(\emptyset) = 1 + \mathbb{P}(\emptyset) \Rightarrow \mathbb{P}(\emptyset) = 0
$$

2) $A \cup A^c = Ω$, and $A \cap A^c = ∅$, as a consequence

$$
\bullet\ \mathbb{P}(\Omega)=\mathbb{P}(A\cup A^c)=\mathbb{P}(A)+\mathbb{P}(A^c)=1\ \Rightarrow\mathbb{P}(A^c)=1-\mathbb{P}(A)
$$

3) If $A \subset B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$

 $B = (B \cap A^c) \cup A \Rightarrow \mathbb{P}(B) = \mathbb{P}((B \cap A^c) \cup A) = \mathbb{P}(B \cap A^c) + \mathbb{P}(A) \geq \mathbb{P}(A).$

- Consequences:

4) $\mathbb{P}(A \cup B \cup C) = \mathbb{P}((A \cup B) \cup C) = \mathbb{P}(A \cup B) + \mathbb{P}(C) - \mathbb{P}((A \cup B) \cap C)$

$$
= \underbrace{\mathbb{P}(A \cup B)}_{\text{max}} + \mathbb{P}(C) - \underbrace{\mathbb{P}[(A \cap C) \cup (B \cap C)]}_{\text{max}}
$$

$$
=\underbrace{\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A\cap B)}_{\text{max}}+\mathbb{P}(C)-\underbrace{\left[\mathbb{P}(A\cap C)+\mathbb{P}(B\cap C)-\mathbb{P}((A\cap C)\cap(B\cap C))\right]}_{\text{max}}
$$

 \triangleright If A, B and C are mutually exclusive, then

 $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$ γ ∅)+P(C)−P(A ∩ C γ ∅)−P(B ∩ C γ ∅ $)+\mathbb{P}(A\cap B\cap C)$ $\frac{1}{\alpha}$ ∅) $= \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C)$

 \triangleright If A_1, A_2, \ldots, A_k are mutually exclusive, then

$$
\mathbb{P}(A_1 \cup A_2 \cup \ldots \cup A_k) = \mathbb{P}(A_1) + \mathbb{P}(A_2) + \ldots + \mathbb{P}(A_k).
$$

Fatima Taousser [Probability and Random Variables \(ECE313/ECE317\)](#page-0-0)

 $5) \,\, A \cup B \cup C = A \cup (B \cap A^c) \cup (C \cap A^c \cap B^c)$

 \rightarrow is a union of ${\bf disjoints}$ sets: $A\cap (B\cap A^c)\cap (C\cap (A^c\cap B^c))=\emptyset$

 $A \cup B \cup C = A \cup (B \cap A^c) \cup (C \cap (A^c \cap B^c)) \leftarrow$ union of disjoint sets red part blue part green part $\Rightarrow \mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B \cap A^{c}) + \mathbb{P}(C \cap A^{c} \cap B^{c})$ 6) $(A^c)^c = A \Rightarrow \mathbb{P}((A^c)^c) = \mathbb{P}(A)$

Example - Let $\mathbb{P}(A) = 0.6$, $\mathbb{P}(B^c \cup C) = 0.5$, $\mathbb{P}(A \cap B^c) = 0.4$, $A \cap C = \emptyset$ $\mathbb{P}[A\cup (B^c\cup C)] = \mathbb{P}(A) + \mathbb{P}(B^c\cup C) - \mathbb{P}(A\cap (B^c\cup C))$ $=\mathbb{P}(A)+\mathbb{P}(B^c\cup C)-\mathbb{P}((A\cap B^c)\cup(A\cap C))$ $\mathbb{P}(\mathcal{A}) + \mathbb{P}(B^c \cup C) - \mathbb{P}((\mathcal{A} \cap B^c) \cup \emptyset)$ $= \mathbb{P}(A) + \mathbb{P}(B^c \cup C) - \mathbb{P}(A \cap B^c)$ $= 0.6 + 0.5 - 0.4 = 0.7$

Example - Let $\mathbb{P}(A) = 0.5$, $\mathbb{P}(A^c \cap B) = 0.3$ (i.e; $\mathbb{P}(B - A) = 0.3$) $\mathbb{P}(A \cup B) = \mathbb{P}[A \cup (A^c \cap B)] = \mathbb{P}(A) + \mathbb{P}(A^c \cap B) - \mathbb{P}(A \cap A^c \cap B)$ $= \mathbb{P}(A) + \mathbb{P}(A^c \cap B) - \mathbb{P}(\emptyset \cap B)$ $=\mathbb{P}(A)+\mathbb{P}(A^c\cap B)-\mathbb{P}(\emptyset)$ $= \mathbb{P}(A) + \mathbb{P}(A^c \cap B) + 0$ $= 0.5 + 0.3 + 0 = 0.8$

Example

- Let $\mathbb{P}(A) = 0.4$, $C \subset A$

$$
\mathbb{P}[A \cup (B^c \cap C)] = \mathbb{P}(A) + \mathbb{P}(B^c \cap C) - \mathbb{P}(A \cap B^c \cap C)
$$

$$
= \mathbb{P}(A) + \mathbb{P}(B^c \cap C) - \mathbb{P}(B^c \cap C)
$$

$$
= \mathbb{P}(A) = 0.4
$$

Probability: Discrete uniform law:

- Assume Ω consist of *n* equally likely elements (*n* = cardinal of Ω , and we denote $|\Omega| = n$).

- Assume the event A consists of k elements ($k =$ cardinal of A, and we denote $|A| = k$.

$$
\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{k}{n} = k \times \frac{1}{n} \implies \frac{1}{n} = \text{probability of each element}
$$

Figure: Discrete sample set Fatima Taousser [Probability and Random Variables \(ECE313/ECE317\)](#page-0-0)

Example

- Flipping a coin $\Rightarrow \Omega = \{H, T\}$
- Event: $A = \{H\}$ $\mathbb{P}(A) = \mathbb{P}(H) = \frac{1}{2}$ - Event: $A = \{T\}$

$$
\mathbb{P}(A)=\mathbb{P}(T)=\frac{1}{2}
$$

- Event: $A = \{H, T\}$

$$
\mathbb{P}(\mathcal{A})=\mathbb{P}(\{\mathcal{H},\,\mathcal{T}\})=\mathbb{P}(\Omega)=1
$$

2

Example

- Tossing a die $\Rightarrow \Omega = \{1, 2, 3, 4, 5, 6\} = 6$ elements

- Event: $A = \{1\}$ $\mathbb{P}(A) = \mathbb{P}(1) = \frac{1}{6}$ 6 $= 0.166$

- Event: $A = \{3\}$ $\mathbb{P}(A) = \mathbb{P}(3) = \frac{1}{6}$ 6 $= 0.166$

- Event: $A = \{1, 3, 4, 6\}$

 $\mathbb{P}(\{1, 3, 4, 6\}) = \mathbb{P}(\{1\} \cup \{3\} \cup \{4\} \cup \{6\}) = \mathbb{P}(\{1\}) + \mathbb{P}(\{3\}) + \mathbb{P}(\{4\}) + \mathbb{P}(\{6\})$ 1 1 1 1 4 2

$$
=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{4}{6}=\frac{2}{3}=0.666
$$

Fatima Taousser [Probability and Random Variables \(ECE313/ECE317\)](#page-0-0)

Probability: Examples Example

Figure: Two rolls of a tetrahedral die

$$
\Omega = \{ \text{All } (X, Y) \} = \{ (1, 1), (1, 2), \dots (4, 4) \} \Rightarrow 16 \text{ elements}
$$

$$
\mathbb{P}(\text{each } (X, Y)) = \frac{1}{16}
$$

- Event:
$$
A = \{(X, Y) : X = 1\}
$$
, $A = \{(1, 1), (1, 2), (1, 3), (1, 4)\}$
\n
$$
\mathbb{P}(A) = \mathbb{P}((1, 1), (1, 2), (1, 3), (1, 4)) = 4 \times \frac{1}{16} = \frac{4}{16} = \frac{1}{4}
$$
\n- Event: $Z = \{(X, Y) : min(X, Y) = 4\}$, $Z = \{(4, 4)\}$
\n
$$
\mathbb{P}(Z) = \mathbb{P}((4, 4)) = \frac{1}{16}.
$$

- Event:

$$
Z = \{ (X, Y) : \min(X, Y) = 2 \}, Z = \{ (2, 2), (2, 3), (2, 4), (3, 2), (4, 2) \}
$$

$$
\mathbb{P}(Z) = \mathbb{P}((2, 2), (2, 3), (2, 4), (3, 2), (4, 2)) = 5 \times \frac{1}{16} = \frac{5}{16}.
$$

Probability: Continuous law:

- Consider the continuous sample set Ω .
- Let the event A which is a subset of Ω .

$$
\mathbb{P}(A) = \frac{\text{area}(A)}{\text{area}(\Omega)}.
$$

Figure: Continuous sample set

 \triangleright Uniform probability law: Probability is computed according to the area since the number of elements of the set is not countable

Probability: Examples Example

Figure: Continuous sample set (the unit square)

- Event:
$$
A = \{(x, y) : x + y \le \frac{1}{2}\}
$$

$$
\mathbb{P}(A) = \mathbb{P}(\{(x, y) : x + y \le \frac{1}{2}\}) = \frac{\text{area}(A)}{\text{area}(\Omega)} = \frac{\frac{(\frac{1}{2} \times \frac{1}{2})}{2}}{1} = \frac{1}{8}
$$
\n
$$
\Rightarrow \mathbb{P}(A) = \mathbb{P}(\{(0.5, 0.3)\}) = \frac{\text{area}(A)}{\text{area}(\Omega)} = \frac{0}{1} = 0
$$

Probability computation steps

- Specify the sample space: (come up with a list of all possible outcomes).
- Specify a probability law: (by assigning probabilities to subsets of the sample set according to our believe to be likely and to be unlikely).
- Identify an event of interest.
- Calculate.

Example1: - Experiment: Flipping a coin with two faces (H, T) three times $\Omega = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow |\Omega| = 8.$

- Event A: We get only one Head

$$
A = \{HTT, THT, TTH\} \rightarrow |A| = 3 \rightarrow \mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{3}{8}
$$

- Event B: We get at least two Tails

$$
B = \{HTT, THT, TTH, TTT\} \rightarrow |B| = 4 \rightarrow \mathbb{P}(B) = \frac{|B|}{|\Omega|} = \frac{4}{8}
$$

- Event C: We get at most two Heads

 $C = \{HHT,HTH,HTT,THH,THT,TTH,TTT\} \rightarrow |C| = 7 \rightarrow \mathbb{P}(C) = \frac{|C|}{|C|}$ |Ω| = 7 8

1) What is the probability that at least one of the events A, B and C occurs? (A occurs OR B occurs OR C occurs) \rightarrow $(A \cup B \cup C)$

$$
A \cup B \cup C = \{HTT, THT, TTH, TTT, HHT, HTH, THH\}
$$

$$
\rightarrow |A \cup B \cup C| = 7 \rightarrow \mathbb{P}(A \cup B \cup C) = \frac{7}{8}
$$

2) What is the probability that none of the events A, B and C occurs? (not A **And** not B **And** not C) \rightarrow $(A^c \cap B^c \cap C^c) = (A \cup B \cup C)^c$

$$
(A \cup B \cup C)^c = \{HHH\} \rightarrow |(A \cup B \cup C)^c| = 1 \rightarrow \mathbb{P}((A \cup B \cup C)^c) = \frac{1}{8}
$$

Or

$$
\mathbb{P}((A\cup B\cup C)^c)=1-\mathbb{P}(A\cup B\cup C)=1-\frac{7}{8}=\frac{1}{8}
$$

Fatima Taousser [Probability and Random Variables \(ECE313/ECE317\)](#page-0-0)

3) What is the probability that all the three events A, B and C occur? (A occurs **And** B occurs **And** C occurs) \rightarrow $(A \cap B \cap C)$

$$
(A \cap B \cap C) = \{HTT, THT, TTH\} \rightarrow |(A \cap B \cap C)| = 3 \rightarrow \mathbb{P}((A \cap B \cap C)) = \frac{3}{8}
$$

4) What is the probability that exactly one of the events A, B, C occurs? (A occurs And not B And not C) Or (B occurs And not A And not C) Or (C occurs And not A And not B)

$$
[A \cap B^c \cap C^c] \cup [B \cap A^c \cap C^c] \cup [C \cap A^c \cap B^c]
$$

$$
[A \cap B^c \cap C^c] = \emptyset, \quad [B \cap A^c \cap C^c] = \emptyset, \quad [C \cap A^c \cap B^c] = \{HHT, HTH, THH\}
$$

$$
\rightarrow |[A \cap B^c \cap C^c] \cup [B \cap A^c \cap C^c] \cup [C \cap A^c \cap B^c]| = 3 \Rightarrow \mathbb{P} = \frac{3}{8}
$$

5) What is the probability that the events A, B occur but not C? (A occurs And B occurs And not C)

 $A \cap B \cap C^c$

 $A\cap B\cap C^c=\emptyset\;\;\rightarrow\; |A\cap B\cap C^c|=0\;\rightarrow {\mathbb P}(A\cap B\cap C^c)=0\to \text{impossible event}$

6) What is the probability that at most one of the events A, B , C occurs? (A occurs And not B And not C) Or (B occurs And not A And not C) Or (C occurs And not A And not B, Or none of them)

 $[A \cap B^c \cap C^c] \cup [B \cap A^c \cap C^c] \cup [C \cap A^c \cap B^c] \cup [A^c \cap B^c \cap C^c]$

 $[A \cap B^c \cap C^c] = \emptyset$, $[B \cap A^c \cap C^c] = \emptyset$, $[C \cap A^c \cap B^c] = \{HHT, HTH, THH\}$ $[A^c \cap B^c \cap C^c] = \{HHH\}$

 $[A \cap B^c \cap C^c] \cup [B \cap A^c \cap C^c] \cup [A^c \cap B^c \cap C^c] = \{HHT,HTH,THH,HHH\}$

 \rightarrow $|[A\cap B^{c}\cap C^{c}]\cup [B\cap A^{c}\cap C^{c}]\cup [C\cap A^{c}\cap B^{c}]\cup [A^{c}\cap B^{c}\cap C^{c}]|=4\ \Rightarrow\ \mathbb{P}=\frac{4}{\circ}$ 8 = 1 2

Example2:

- Alice and Bob each choose at random a number in the interval [0, 2]. Consider the following events

- A) Both numbers are greater than $\frac{1}{3}$
- B) At least one of the numbers is greater than $\frac{1}{3}$
- C) The two numbers are equal
- D) Alice's number is greater than $\frac{1}{3}$
- E) The magnitude of the difference of the two number is greater than $\frac{1}{3}$
- Find the probabilities:
- $\mathbb{P}(A), \ \mathbb{P}(B), \ \mathbb{P}(C), \ \mathbb{P}(D), \ \mathbb{P}(E), \ \mathbb{P}(A \cap D), \ \mathbb{P}(D \cap E)$

$$
\Omega = \{(x, y) : 0 \le x \le 2, \quad 0 \le y \le 2\}
$$

- Uniform probability law:

$$
\textit{area}(\Omega) = 2 \times 2 = 4
$$

A) Both numbers are greater than $\frac{1}{3}$

$$
A = \{(x, y) : x \ge \frac{1}{3}, \text{ and } y \ge \frac{1}{3}\}\
$$

$$
area(A) = (2 - \frac{1}{3}) \times (2 - \frac{1}{3}) = \frac{5}{3} \times \frac{5}{3} = \frac{25}{9}
$$

$$
\mathbb{P}(A) = \frac{area(A)}{area(\Omega)} = \frac{\frac{25}{9}}{4} = \frac{25}{36}
$$

B) At least one of the numbers is greater than $\frac{1}{3}$

$$
B = \{(x, y) : x \geq \frac{1}{3}, \text{ or } y \geq \frac{1}{3}\}\
$$

$$
B^{c} = \{(x, y) : x \leq \frac{1}{3}, \text{ and } y \leq \frac{1}{3}\} \Rightarrow \mathbb{P}(B^{c}) = \frac{\text{area}(B^{c})}{\text{area}(\Omega)} = \frac{\frac{1}{3} \times \frac{1}{3}}{4} = \frac{\frac{1}{9}}{4} = \frac{1}{36}
$$

$$
\Rightarrow \mathbb{P}(B) = 1 - \mathbb{P}(B^{c}) = 1 - \frac{1}{36} = \frac{35}{36}
$$

Or

area(B) = 4 - area(B^c) = 4 -
$$
\frac{1}{9}
$$
 = $\frac{35}{9}$ \Rightarrow $\mathbb{P}(B) = \frac{\text{area}(B)}{\text{area}(\Omega)} = \frac{\frac{35}{9}}{4} = \frac{35}{36}$

C) The two numbers are equal

$$
C=\{(x,y):x=y\}
$$

$$
area(C) = 0 \rightarrow \text{ the area of a line } = 0
$$

$$
\mathbb{P}(C) = \frac{area(C)}{area(\Omega)} = \frac{0}{4} = 0
$$

D) Alice's number is greater than $\frac{1}{3}$

E) The magnitude of the difference of the two numbers is greater than $\frac{1}{3}$

$$
E = \{(x, y) : |x - y| > \frac{1}{3}\} = (x, y) : \begin{cases} x - y > \frac{1}{3} \\ OR \\ x - y < \frac{-1}{3} \end{cases} \Rightarrow \begin{cases} y < x - \frac{1}{3} \\ OR \\ y > x + \frac{1}{3} \end{cases}
$$

$$
\text{area}(E) = \frac{\frac{5}{3} \times \frac{5}{3}}{2} + \frac{\frac{5}{3} \times \frac{5}{3}}{2} = \frac{25}{9} \implies \mathbb{P}(E) = \frac{\text{area}(E)}{\text{area}(\Omega)} = \frac{\frac{25}{9}}{4} = \frac{25}{36}
$$
\n
$$
\text{Note that, } E^c = \{(x, y) : |x - y| \le \frac{1}{3}\} = \{(x, y) : x - y \le \frac{1}{3} \text{ and } x - y \ge \frac{-1}{3}\}
$$
\n
$$
\implies \mathbb{E} = 1 - \mathbb{P}(E) = 1 - \frac{25}{36} = \frac{11}{36}
$$

- Both numbers are greater than $\frac{1}{3}$ and Alice's number is greater than $\frac{1}{3}$

$$
A \cap D = \{(x, y) : x \ge \frac{1}{3} \text{ and } x \ge \frac{1}{3} \text{ and } y \ge \frac{1}{3} \} = \{(x, y) : x \ge \frac{1}{3} \text{ and } y \ge \frac{1}{3} \} = A
$$

- Alice's number is greater than $\frac{1}{3}$ and the magnitude of the difference of the two numbers is greater than $\frac{1}{3}$

$$
D \cap E = \{(x,y) : x \geq \frac{1}{3} \text{ and } x - y > \frac{1}{3} \text{ and } x - y < \frac{-1}{3}\}
$$

Problem 1: Given the two events \vec{A} and \vec{B} such that:

$$
\mathbb{P}(A) = 0.3, \quad \mathbb{P}(B) = 0.6, \quad \mathbb{P}(A \cap B) = 0.18
$$

- Find

- i) $\mathbb{P}(A \text{ or } B)$
- ii) $\mathbb{P}(A \text{ and } \text{not } B)$
- iii) $\mathbb{P}(\text{neither }A \text{ nor }B)$

Problem 1-Solution:

i)
$$
\mathbb{P}(A \text{ or } B) = \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) = 0.3 + 0.6 - 0.18 = 0.72
$$

- ii) $\mathbb{P}(A \text{ and } \text{not}B) = \mathbb{P}(A \cap B^c) = \mathbb{P}(A) \mathbb{P}(A \cap B) = 0.3 0.18 = 0.12$
	- Method 2: $\overline{A} \cup \overline{B} = \overline{B} \cup (\overline{A} \cap \overline{B^c}) \Rightarrow \mathbb{P}(\overline{A} \cup \overline{B}) = \mathbb{P}(B) + \mathbb{P}(A \cap \overline{B^c}) \Rightarrow$ $\mathbb{P}(A \cap B^c) = \mathbb{P}(A \cup B) - \mathbb{P}(B) = 0.72 - 0.6 = 0.12$
- iii) $\mathbb{P}(\text{neither } A \text{ nor } B) = \mathbb{P}(A^c \cap B^c) = \mathbb{P}((A \cup B)^c) = 1 \mathbb{P}(A \cup B) = 1$ $1 - 0.72 = 0.28$

Problem 2:

A die is tossed 2 times. Find the probability of getting an odd number at least one time.

$$
\Omega = \{(1, 2), (1, 2), \dots, (6, 6)\} \rightarrow |\Omega| = 36
$$

Event A: Getting an odd number at least one time \rightarrow (odd, even) or (odd, odd) or (even,
odd) $\rightarrow \{1, 3, 5\}, \{2, 4, 6\} \Rightarrow |A| = |(odd, even)| + |(odd, odd)| + |(even, odd)| =$
 $(3 \times 3) + (3 \times 3) + (3 \times 3) = 27 \Rightarrow \mathbb{P}(A) = \frac{27}{36} = \frac{3}{4}$
- Method 2: $|A^c| = |(even, even)| = 3 \times 3 = 9 \Rightarrow \mathbb{P}(A) = 1 - \mathbb{P}(A^c) = 1 - \frac{9}{36} = \frac{27}{36}$

Problem 3: A die is tossed 3 times. Find the probabilities of the following events

- A: Getting an even number at least one time.
- B: Getting an even number at most one time.
- C: Getting an even number exactly one time.

Problem 3-Solution:

 $\Omega = \{(1, 1, 1), (1, 1, 2), \ldots, (6, 6, 6)\} \rightarrow |\Omega| = 216$

• A: Getting an even number at least one time. \rightarrow (even, odd, even) or (even, even, odd) or (odd, even, odd), $\dots \rightarrow$ The easiest way is to consider the complement: $\mathcal{A}^c\colon$ Getting no even number \to (odd, odd, odd) $\to\{1,3,5\}\Rightarrow |\mathcal{A}^c|=(3\times3\times3)=27$

| {z } odd \Rightarrow $\mathbb{P}(A^c) = \frac{27}{216} = \frac{1}{8}$ $\frac{1}{8} \Rightarrow \mathbb{P}(A) = 1 - \mathbb{P}(A^c) = 1 - \frac{1}{8} = \frac{7}{8} = 0.87$ • B: Getting an even number at most one time. \rightarrow (even, odd, odd) or (odd, even, odd) or (odd, odd, even) or (odd, odd, odd) $\rightarrow |B|=4\times(3\times3\times3)=108 \Rightarrow \mathbb{P}(B)=\frac{108}{216}=0.5$ • C: Getting an even exactly one time. \rightarrow (even, odd, odd) or (odd, even, odd) or (odd, odd, even) $\rightarrow |B| = 3 \times (3 \times 3 \times 3) = 81 \Rightarrow \mathbb{P}(B) = \frac{81}{216} = 0.37$

Problem 3:

In a survey of 200 people that had just returned from a trip to Europe, the following information was gathered.

- 142 visited England
- 95 visited Italy
- 65 visited Germany
- 70 visited both England and Italy
- 50 visited both England and Germany
- 30 visited both Italy and Germany
- 20 visited all these three countries
- a) How many went to England but not Italy or Germany?
- b) How many went to exactly one of these three countries?
- c) How many went to none of these three countries?
- e) Compute the probabilities of the events described in a), b) and c)

Problem 3-Solution:

 $|\Omega| = 200$

- E = people who visited England $\rightarrow n(E) = 142$
- I = people who visited Italy $\rightarrow n(I) = 95$
- $G =$ people who visited Germany $\rightarrow n(G) = 65$
- $E \cap I$ = people who visited both England and Italy $\rightarrow n(E \cap I) = 70$
- $E \cap G =$ people who visited both England and Germany $\rightarrow n(E \cap G) = 50$
- $I \cap G =$ people who visited both Italy and Germany $\rightarrow n(I \cap G) = 30$
- $E \cap I \cap G =$ people who visited all these three countries $\rightarrow n(E \cap I \cap G) = 20$

Rule:
$$
n(A) = n(A - B) + n(A \cap B) \Rightarrow n(A - B) = n(A) - n(A \cap B)
$$

a) How many went to England but not to Italy or Germany? \rightarrow $n(E \cap (I \cup G)^c) = n(E - (I \cup G)) = ?$

 $n(E) = n[E - (I \cup G)] + n[E \cap (I \cup G)] = n(E \cap (I \cup G)^{c}) + n((E \cap I) \cup (E \cap G))$ $\Rightarrow n(E \cap (I \cup G)^c) = n(E) - n((E \cap I) \cup (E \cap G)) = n(E) - [n(E \cap I) + n(E \cap G) - n(E \cap I \cap G)]$ $= 142 - [50 + 30 + 20] = 42$

Problem 3-Solution:

 $|\Omega| = 200$

- E = people who visited England $\rightarrow n(E) = 142$
- $I =$ people who visited Italy $\rightarrow n(I) = 95$
- $G =$ people who visited Germany $\rightarrow n(G) = 65$
- $E \cap I$ = people who visited both England and Italy $\rightarrow n(E \cap I) = 70$
- $E \cap G =$ people who visited both England and Germany $\rightarrow n(E \cap G) = 50$
- $I \cap G =$ people who visited both Italy and Germany $\rightarrow n(I \cap G) = 30$
- $E \cap I \cap G =$ people who visited all these three countries $\rightarrow n(E \cap I \cap G) = 20$ b) How many went to exactly one of these three countries?
- $\rightarrow n[(E \cap I^c \cap G^c) \cup (E^c \cap I \cap G^c) \cup (E^c \cap I^c \cap G)] =$ $n(E \cap I^c \cap G^c) + n(E^c \cap I \cap G^c) + n(E^c \cap I^c \cap G)$

 $n[E\cap (I\cup G)^c]+n[I\cap (E\cap G)^c]+n[G\cap (E\cup I)^c]=n[E-(I\cup G)]+n[I-(E\cap G)]+n[G-(E\cup I)]$

 $= [n(E) - n(E \cap (I \cup G))] + [n(I) - n(I \cap (E \cup G))] + [n(G) - n(G \cap (E \cup I))]$

 $=[n(E) - (n(E \cap I) + n(E \cap G) - n(E \cap I \cap G))] + [n(I) - (n(I \cap E) + n(I \cap G) - n(E \cap I \cap G))]$ $+[n(G)-(n(G\cap I)+n(G\cap E)-n(E\cap I\cap G))] = 42+[95-(70+30-20)]+[65-(30+50-20)] = 62$

Fatima Taousser [Probability and Random Variables \(ECE313/ECE317\)](#page-0-0)

Problem 3-Solution:

 $|\Omega| = 200$

- E = people who visited England $\rightarrow n(E) = 142$
- $I =$ people who visited Italy $\rightarrow n(I) = 95$
- $G =$ people who visited Germany $\rightarrow n(G) = 65$
- $E \cap I$ = people who visited both England and Italy $\rightarrow n(E \cap I) = 70$
- $E \cap G =$ people who visited both England and Germany $\rightarrow n(E \cap G) = 50$
- $I \cap G =$ people who visited both Italy and Germany $\rightarrow n(I \cap G) = 30$
- $E \cap I \cap G =$ people who visited all these three countries $\rightarrow n(E \cap I \cap G) = 20$ c) How many went to none of these three countries? \rightarrow $n(E^c \cap I^c \cap G^c) = ?$

$$
n(E^{c} \cap I^{c} \cap G^{c}) = n((E \cup I \cup G)^{c}) = 200 - n(E \cup I \cup G) = 200 - n[E \cup (I - E) \cup (G - (E \cup I))]
$$

= 200 - $[n(E) + n(I - E) + n(G - (E \cup I))] = 200 - [n(E) + (n(I) - n(I \cap E)) + n(G) - n(G \cap (E \cup I))]$
= 200 - $[n(E) + (n(I) - n(I \cap E)) + n(G) - n(G \cap E) \cup (G \cap I)]$
= 200 - $[n(E) + (n(I) - n(I \cap E)) + n(G) - n(G \cap E) - n(G \cap I) + n(E \cap I \cap G)]$
= 200 - $[142 + 95 + 65 - 50 - 30 - 50 + 20] = 28$.

Problem 3-Solution:

e) Compute the probabilities of the events described in a), b) and c) $|\Omega| = 200$, $n(a) = 42$, $n(b) = 62$, $n(c) = 28$.

$$
\mathbb{P}(a) = \frac{n(a)}{|\Omega|} = \frac{42}{200} = 0.21, \quad \mathbb{P}(b) = \frac{n(b)}{|\Omega|} = \frac{62}{200} = 0.31, \quad \mathbb{P}(c) = \frac{n(c)}{|\Omega|} = \frac{28}{200} = 0.14
$$

Axioms

1)
$$
0 \le P \le 1
$$

\n2) $P(\Omega) = 1$, $P(\emptyset) = 0$
\n3) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
\n4) $P(A^c) = 1 - P(A)$
\n5) $A - B = A \cap B^c$
\n6) $A \cup B = A \cup (B - A)$ or $A \cup B = B \cup (A - B)$
\n7) $P(A - B) = P(A) - P(A \cap B)$ OR $P(A - B) = P(A \cup B) - P(B)$
\n8) $P(B - A) = P(B) - P(A \cap B)$ OR $P(B - A) = P(A \cup B) - P(A)$
\n9) $P(A) = \frac{|A|}{|\Omega|} \rightarrow \text{for discrete law}, \quad P(A) = \frac{\text{area}(A)}{\text{area}(\Omega)} \rightarrow \text{for continuous law}$