Probability is a law which is assigned to experiences where the result is uncertain.
Example:
$\Omega$ $= \{HHH, HHT, HTH,HTT, THH, THT, TTH, TTT\}$
Example:
$\Omega$ $= \{(1, 1),(1, 2), . . . ,(6, 6)\} = 36$ elements (see figure)
Which outcomes are more likely to occur and which ones are less likely to occur?
$\Rightarrow$ We do that by assigning probability ($\mathbb{P}$) to the different outcomes.
$\blacktriangleright$ The list of outcomes must be:
$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$
$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$
Consequences:
1. $\Omega = \Omega \cup \emptyset$, and $\Omega \cap \emptyset = \emptyset$, as a consequence:
$1 = \mathbb{P}(\Omega) = \mathbb{P}(\Omega \cup \emptyset) = \mathbb{P}(\Omega) + \mathbb{P}(\emptyset) = 1 + \mathbb{P}(\emptyset) \Rightarrow$ $\mathbb{P}(\emptyset) = 0$
2. $A \cup A^c = \Omega,$ and $A \cap A^c = \emptyset$, as a consequence:
$\mathbb{P}(\Omega) = \mathbb{P}(A \cup A^c) =$ $\mathbb{P}(A) + \mathbb{P}(A^c) = 1 \Rightarrow \mathbb{P}(A^c) = 1 - \mathbb{P}(A)$
3. If $A \subset B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$
\[B = (B \cap A^c) \cup A \Rightarrow \mathbb{P}(B) = \mathbb{P}((B \cap A^c) \cup A) = \mathbb{P}(B \cap A^c) + \mathbb{P}(A) \geq \mathbb{P}(A)\]4. $\mathbb{P}(A \cup B \cup C) = \mathbb{P}((A \cup B) \cup C) = \mathbb{P}(A \cup B) + \mathbb{P}(C) - \mathbb{P}((A \cup B) \cap C)$
\[= \underbrace{\mathbb{P}(A \cup B)} + \mathbb{P}(C) - \underbrace{\mathbb{P}((A \cap C) \cup (B \cap C))}\]$= \underbrace{\mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)} + \mathbb{P}(C) - \underbrace{[\mathbb{P}(A \cap C) + \mathbb{P}(B \cap C) - \mathbb{P}((A \cap C) \cap (B \cap C))]}$
$\triangleright$ If $A$, $B$, and $C$ are mutually exclusive, then
$= \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C)$
$\triangleright$ If $A_1, A_2, \ldots, A_k$ are mutually exclusive, then
\[\mathbb{P}(A_1 \cup A_2 \cup \ldots \cup A_k) = \mathbb{P}(A_1) + \mathbb{P}(A_2) + \ldots + \mathbb{P}(A_k)\]5. $A \cup B \cup C = A$ $\cup$ $(B \cap A^{c})$ $\cup$ $(C \cap A^{c} \cap B^{c})$
$\rightarrow$ is a union of disjoint sets: $A$ $\cap$ $(B \cap A^c)$ $\cap$ $(C \cap (A^{c} \cap B^{c})) =$ $\emptyset$
$A \cup B \cup C =$ $A$ $\cup$ $(B \cap A^{c})$ $\cup$ $(C \cap (A^{c} \cap B^{c}))$ $\leftarrow$ union of disjoint sets
$\Rightarrow$ $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B \cap A^{c}) + \mathbb{P}(C \cap A^{c} \cap B^{c})$
6. $(A^{c})^{c} = A \Rightarrow \mathbb{P}((A^{c})^{c}) = \mathbb{P}(A)$
Example:
$\mathbb{P}[A \cup (B^c \cup C)] = \mathbb{P}(A) + \mathbb{P}(B^c \cup C) - \mathbb{P}(A \cap (B^c \cup C))$
$= \mathbb{P}(A) + \mathbb{P}(B^c \cup C) - \mathbb{P}((A \cap B^c) \cup (A \cap C))$
$= \mathbb{P}(A) + \mathbb{P}(B^c \cup C) - \mathbb{P}((A \cap B^c) \cup \emptyset)$
$= \mathbb{P}(A) + \mathbb{P}(B^c \cup C) - \mathbb{P}(A \cap B^c)$
$= 0.6 + 0.5 - 0.4$
$= 0.7$
Example:
$\mathbb{P}(A \cup B) = \mathbb{P}[A \cup (A^c \cap B)] = \mathbb{P}(A) + \mathbb{P}(A^c \cap B) - \mathbb{P}(A \cap A^c \cap B)$
$= \mathbb{P}(A) + \mathbb{P}(A^c \cap B) - \mathbb{P}(\emptyset \cap B)$
$= \mathbb{P}(A) + \mathbb{P}(A^c \cap B) - \mathbb{P}(\emptyset)$
$= \mathbb{P}(A) + \mathbb{P}(A^c \cap B) + 0$
$= 0.5 + 0.3 + 0$
$= 0.8$
Example:
$\mathbb{P}[A \cup (B^c \cap C)] = \mathbb{P}(A) + \mathbb{P}(B^c \cap C) - \mathbb{P}(A \cap B^c \cap C)$
$= \mathbb{P}(A) + \mathbb{P}(B^c \cap C) - \mathbb{P}(B^c \cap C)$
$= \mathbb{P}(A) = 0.4$
$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{k}{n} = k \times \frac{1}{n} \Rightarrow \frac{1}{n} =$ probability of each element
Example:
Example:
Example:
$\Omega = \{(X, Y)\} = \{(1, 1), (1, 2), \ldots, (4, 4)\} \Rightarrow$ 16 elements.
\[\mathbb{P}(\text{each} \; (X, Y)) = \frac{1}{16}\]$\mathbb{P}(A) = \frac{\text{area} (A)}{\text{area} (\Omega)}$.
$\triangleright$ Uniform probability law: Probability is computed according to the area since the number of elements of the set is not countable
Example:
\[\Omega = \{(x, y) : 0 \leq x \leq 1, \; 0 \leq y \leq 1\}\] \[\text{area}(\Omega) = 1 \times 1 = 1\]Example 1: - Experiment: Flipping a coin with two faces $(H, \; T)$ three times
$\Omega$ $= \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \lvert \Omega \rvert = 8$.
$A$ $= \{HTT, THT, TTH\} \rightarrow \lvert A \rvert = 3 \rightarrow \mathbb{P}(A) = \frac{\lvert A \rvert}{ \lvert \Omega \rvert} = \frac{3}{8}$
$B$ $= \{HTT,THT,TTH,TTT\} \rightarrow \lvert B \rvert = 4 \rightarrow \mathbb{P}(B) = \frac{\lvert B \rvert}{ \lvert \Omega \rvert} = \frac{4}{8}$
$C$ $= \{HHT,HTH,HTT,THH,THT,TTH,TTT\} \rightarrow \lvert C \rvert = 7 \rightarrow \mathbb{P}(C) = \frac{\lvert C \rvert}{ \lvert \Omega \rvert} = \frac{7}{8}$
1. What is the probability that at least one of the events $A$, $B$ and $C$ occurs? ($A$ occurs OR $B$ occurs OR $C$ occurs) $\rightarrow (A \cup B \cup C)$
\[A \cup B \cup C = \{HTT, THT, TTH, TTT, HHT, HTH, THH\}\] \[\rightarrow \lvert A \cup B \cup C \rvert = 7 \rightarrow \mathbb{P}(A \cup B \cup C) = \frac{7}{8}\]2. What is the probability that none of the events $A$, $B$ and $C$ occurs? (not $A$ AND not $B$ AND not $C$ $\rightarrow (A^{c} \cap B^{c} \cap C^{c}) = (A \cup B \cup C)^{c}$
\[(A \cup B \cup C)^{c} = \{HHH\} \rightarrow \lvert (A \cup B \cup C)^{c} \rvert = 1 \rightarrow \mathbb{P}((A \cup B \cup C)^{c}) = \frac{1}{8}\]Or
\[P((A \cup B \cup C)^{c}) = 1 - \mathbb{P}(A \cup B \cup C) = 1 - \frac{7}{8} = \frac{1}{8}\]3. What is the probability that all the three events $A$, $B$ and $C$ occur? ($A$ occurs AND $B$ occurs AND $C$ occurs) $\rightarrow (A \cap B \cap C)$
\[(A \cap B \cap C) = \{HTT, THT, TTH\} \rightarrow \lvert (A \cap B \cap C) \rvert = 3 \rightarrow \mathbb{P}(A \cap B \cap C) = \frac{3}{8}\]4. What is the probability that exactly one of the events $A$, $B$, $C$ occurs? ($A$ occurs AND not $B$ AND not $C$) OR ($B$ occurs AND not $A$ AND not $C$) OR ($C$ occurs AND not $A$ AND not $B$)
\[[A \cap B^{c} \cap C^{c}] \cup [B \cap A^{c} \cap C^{c}] \cup [C \cap A^{c} \cap B^{c}]\] \[[A \cap B^{c} \cap C^{c}] = \emptyset, [B \cap A^{c} \cap C^{c}] = \emptyset, [C \cap A^{c} \cap B^{c}] = \{HHT, HTH, THH\}\] \[\rightarrow \lvert [A \cap B^{c} \cap C^{c}] \cup [B \cap A^{c} \cap C^{c}] \cup [C \cap A^{c} \cap B^{c}] \rvert = 3 \Rightarrow \mathbb{P} = \frac{3}{8}\]5. What is the probability that the events $A$, $B$ occur but not $C$? ($A$ occurs AND $B$ occurs AND not $C$)
\[A \cap B \cap C^{c}\]$A \cap B \cap C^{c} = \emptyset \rightarrow \lvert A \cap B \cap C^{c} \rvert = 0 \rightarrow \mathbb{P}(A \cap B \cap C^{c}) = 0 \rightarrow$ impossible event
6. What is the probability that at most one of the events $A$, $B$, $C$ occurs? ($A$ occurs AND not $B$ AND not $C$) OR ($B$ occurs AND not $A$ AND not $C$) OR ($C$ occurs AND not $A$ AND not $B$, OR none of them)
\[[A \cap B^{c} \cap C^{c}] \cup [B \cap A^{c} \cap C^{c}] \cup [C \cap A^{c} \cap B^{c}] \cup [A^{c} \cap B^{c} \cap C^{c}]\] \[[A \cap B^{c} \cap C^{c}] = \emptyset, [B \cap A^{c} \cap C^{c}] = \emptyset, [C \cap A^{c} \cap B^{c}] = \{HHT, HTH, THH\}\] \[[A^{c} \cap B^{c} \cap C^{c}] = \{HHH\}\] \[[A \cap B^{c} \cap C^{c}] \cup [B \cap A^{c} \cap C^{c}] \cup [C \cap A^{c} \cap B^{c}] \cup [A^{c} \cap B^{c} \cap C^{c}] = \{HHT, HTH, THH, HHH\}\] \[\lvert [A \cap B^{c} \cap C^{c}] \cup [B \cap A^{c} \cap C^{c}] \cup [C \cap A^{c} \cap B^{c}] \cup [A^{c} \cap B^{c} \cap C^{c}]\rvert = 4 \Rightarrow \mathbb{P} = \frac{4}{8} = \frac{1}{2}\]Example 2: Alice and Bob each choose at random a number in the interval $[0, \; 2]$.
Consider the following events:
A) Both numbers are greater than $\frac{1}{3}$
B) At least one of the numbers is greater than $\frac{1}{3}$
C) The two numbers are equal
D) Alice’s number is greater than $\frac{1}{3}$
E) The magnitude of the difference of the two number is greater than $\frac{1}{3}$
Find the probabilities:
$\mathbb{P}(A), \; \mathbb{P}(B), \; \mathbb{P}(C), \; \mathbb{P}(D), \; \mathbb{P}(E), \; \mathbb{P}(A \cap D), \; \mathbb{P}(D \cap E)$
\[\Omega = \{(x, \; y) : 0 \leq x \leq 2, 0 \leq y \leq 2\}\]Uniform probability law:
\[\text{area}(\Omega) = 2 \times 2 = 4\]A) Both numbers are greater than $\frac{1}{3}$
$A = \{(x, \; y) : x \geq \frac{1}{3}$, and $y \geq \frac{1}{3}\}$
\[\text{area}(A) = \left(2 - \frac{1}{3}\right) \times \left(2 - \frac{1}{3}\right) = \frac{5}{3} \times \frac{5}{3} = \frac{25}{9}\] \[\mathbb{P}(A) = \frac{\text{area}(A)}{\text{area}(\Omega)} = \frac{\frac{25}{9}}{4} = \frac{25}{36}\]B) At least one of the numbers is greater than $\frac{1}{3}$
$B = \{(x, y) : x \geq \frac{1}{3}$, or $y \geq \frac{1}{3}\}$
\[\mathbb{P}(B^{c}) = \\{(x, y) : x \leq \frac{1}{3},\, y \leq \frac{1}{3}\\} \Rightarrow \mathbb{P}(B^{c}) = \frac{\text{area}(B^{c})}{\text{area}(\Omega)} = \frac{\frac{1}{3} \times \frac{1}{3}}{4} = \frac{\frac{1}{9}}{4} = \frac{1}{36}\] \[\Rightarrow \mathbb{P}(B) = 1 - \mathbb{P}(B^{c}) = 1 - \frac{1}{36} = \frac{35}{36}\]Or
\[\text{area}(B) = 4 - \text{area}(B^{c}) = 4 - \frac{1}{9} = \frac{35}{9} \Rightarrow \mathbb{P}(B) = \frac{\text{area}(B)}{\text{area}(\Omega)} = \frac{\frac{35}{9}}{4} = \frac{35}{36}\]C) The two numbers are equal
\[C = \{(x, y) : x = y\}\]$\text{area}(C) = 0 \rightarrow$ the area of line $= 0$
\[\mathbb{P}(C) = \frac{\text{area}(C)}{\text{area}(\Omega)} = \frac{0}{4} = 0\]D) Alice’s number is greater than $\frac{1}{3}$
\[D = \{(x, y) : x \geq \frac{1}{3}\}\] \[\text{area}(D) = \left(2 - \frac{1}{3}\right) \times 2 = \frac{10}{3} \Rightarrow \mathbb{P}(D) = \frac{\text{area}(D)}{\text{area}(\Omega)} = \frac{\frac{10}{3}}{4} = \frac{10}{12} = \frac{5}{6}\]E) The magnitude of the difference of the two numbers is greater than $\frac{1}{3}$
\[E = \{(x, \; y) : \lvert x - y \rvert > \frac{1}{3}\} = \{(x, \; y) : \begin{cases} x - y > \frac{1}{3} \quad \\ \text{OR} \\ x - y < -\frac{1}{3} \end{cases} \Rightarrow \begin{cases} y < x - \frac{1}{3} \quad \\ \text{OR} \\ y > x + \frac{1}{3} \end{cases}\] \[\text{area}(E) = \frac{\frac{5}{3} \times \frac{5}{3}}{2} + \frac{\frac{5}{3} \times \frac{5}{3}}{2} = \frac{25}{9} \Rightarrow \mathbb{P}(E) = \frac{\text{area}(E)}{\text{area}(\Omega)} = \frac{\frac{25}{9}}{4} = \frac{25}{36}\]$A \cap D = \{(x, y) : x \geq \frac{1}{3}$ and $x \geq \frac{1}{3}$ and $y \geq \frac{1}{3}\} = \{(x, y) : x \geq \frac{1}{3}$ and $y \geq \frac{1}{3}\} = A$
\[\mathbb{P}(A \cap D) = P(A) = \frac{25}{36}\]$D \cap E = \{(x, \; y) : x \geq \frac{1}{3}$ and $x - y > \frac{1}{3}$ and $x - y < \frac{-1}{3}\}$
\[\text{area}(D \cap E) = \frac{\left(\frac{5}{3} - \frac{1}{3}\right) \times \left(\frac{5}{3} - \frac{1}{3}\right)}{2} + \frac{\frac{5}{3} \times \frac{5}{3}}{2} = \frac{\frac{4}{3} \times \frac{4}{3}}{2} + \frac{\frac{5}{3} \times \frac{5}{3}}{2} = \frac{41}{18}\] \[\mathbb{P}(D \cap E) = \frac{\text{area}(D \cap E)}{\text{area}(\Omega)} = \frac{\frac{41}{18}}{4} = \frac{41}{72}\]Problem 1: Given the two events $A$ and $B$ such that:
$\mathbb{P}(A) = 0.3$, $\mathbb{P}(B) = 0.6$, $\mathbb{P}(A \cap B) = 0.18$
Find
i) $\mathbb{P}(A$ or $B)$
ii) $\mathbb{P}(A$ and not $B)$
iii) $\mathbb{P}($neither $A$ nor $B)$
Problem 1 - Solution:
i) $\mathbb{P}(A$ or $B) = \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) = 0.3 + 0.6 - 0.18 = 0.72$
ii) $\mathbb{P}(A$ and not $B) = \mathbb{P}(A \cap B^{c}) = \mathbb{P}(A) - \mathbb{P}(A \cap B) = 0.3 - 0.18 = 0.12$
Method 2: $A \cup B = B \cup (A \cap B^{c}) \Rightarrow \mathbb{P}(A \cup B) = \mathbb{P}(B) + \mathbb{P}(A \cap B^{c}) \Rightarrow \mathbb{P}(A \cap B^{c}) =$
$\mathbb{P}(A \cup B) - \mathbb{P}(B) = 0.72 - 0.6 = 0.12$
iii) $\mathbb{P}($neither $A$ nor $B) = \mathbb{P}(A^{c} \cap B^{c}) = \mathbb{P}((A \cup B)^{c}) = 1 - \mathbb{P}(A \cup B) = 1 - 0.72 = 0.28$
Problem 2:
A die is tossed 2 times. Find the probability of getting an odd number at least one time.
$\Omega = \{(1, 2), (1, 2), \ldots, (6, 6)\} \rightarrow \lvert \Omega \rvert = 36$
Method 2: $\lvert A^{c} \rvert = \lvert (\text{even, even}) \rvert = 3 \times 3 = 9 \Rightarrow \mathbb{P}(A) = 1 - \mathbb{P}(A^{c}) = 1 - \frac{9}{36} = \frac{27}{36}$
Problem 3:
A die is tossed 3 times. Find the probabilities of the following events
A: Getting an even number at least one time.
B: Getting an even number at most one time.
C: Getting an even number exactly one time.
Problem 3 - Solution:
$\Omega = {(1, 1, 1), (1, 1, 2), \ldots, (6, 6, 6)} \rightarrow \lvert\Omega\rvert = 216$
$A^{c}$: Getting no even number $\rightarrow$ (odd, odd, odd) $\rightarrow \underbrace{{1, 3, 5}}_{\text{odd}} \Rightarrow \lvert A^{c} \rvert (3 \times 3 \times 3) = 27$
$\Rightarrow \mathbb{P}(A^{c}) = \frac{27}{216} = \frac{1}{8} \Rightarrow \mathbb{P}(A) = 1 - \mathbb{P}(A^{c}) = 1 - \frac{1}{8} = \frac{7}{8} =$ $0.87$
B: Getting an even number at most one time. $\rightarrow$ (even, odd, odd) or (odd, even, odd) or (odd, odd, even) or (odd, odd, odd) $\rightarrow \lvert B \rvert = 4 \times (3 \times 3 \times 3) = 108 \Rightarrow \mathbb{P}(B) = \frac{108}{216} =$ $0.5$
C: Getting an even exactly one time. $\rightarrow$ (even, odd, odd) or (odd, even, odd) or (odd, odd, even) $\rightarrow \lvert B \rvert$ $= 3 \times (3 \times 3 \times 3) = 81 \Rightarrow \mathbb{P}(B) = \frac{81}{216} =$ $0.37$
Problem 4:
In a survey of 200 people that had just returned from a trip to Europe, the following information was gathered.
a) How many went to England but not Italy or Germany?
b) How many went to exactly one of these three countries?
c) How many went to none of these three countries?
e) Compute the probabilities of the events described in a), b) and c)
Problem 4 - Solution:
$\lvert \Omega \rvert = 200$
Rule : $n(A) = n(A - B) + n(A \cap B) \Rightarrow n(A - B) = n(A) - n(A \cap B)$
a) How many went to England but not to Italy or Germany? $\rightarrow$ $n(E \cap (I \cup G)^c) = n(E - (I \cup G)) =$?
\[n(E) = n[E - (I \cup G)] + n[E \cap (I \cup G)] = n(E \cap (I \cup G)^c) + n((E \cap I) \cup (E \cap G))\] \[n(E \cap (I \cup G)^{c}) = n(E) - n((E \cap I) \cup (E \cap G)) = n(E) - [n(E \cap I) + n(E \cap G) - n(E \cap I \cap G)]\]$= 142 - [50 + 30 + 20] =$ $42$
b) How many went to exactly one of these three countries? $\rightarrow$ $n[(E \cap I^{c} \cap G^{c}) \cup (E^{c} \cap I \cap G^{c}) \cup (E^{c} \cap I^{c} \cap G)]$ $= n(E \cap I^{c} \cap G^{c}) + n(E^{c} \cap I \cap G^{c}) + n(E^{c} \cap I^{c} \cap G)$
\[= n[E \cap (I \cup G)^{c}] + n[I \cap (E \cap G)^{c}] + n[G \cap (E \cup I)^{c}] = n[E - (I \cup G)] + n[I - (E \cap G)] + n[G - (E \cup I)]\] \[= [n(E) - n(E - (I \cup G))] + [n(I) - n(I - (E \cup G))] + [n(G) - n(G - (E \cup I))]\] \[= [n(E) - (n(E \cap I) + n(E \cap G) - n(E \cap I \cap G))] + [n(I) - (n(I \cap E) + n(I \cap G) - n(E \cap I \cap G))]\] \[+[n(G) - (n(G \cap I) + n(G \cap E) - n(E \cap I \cap G))] = 42 + [95 - (70 + 30 - 20)]\]$+ [65 - (30 + 50 - 20)] =$ $62$
c) How many went to none of these three countries? $\rightarrow$ $n(E^{c} \cap I^{c} \cap G^{c}) =$?
\[n(E^c \cap I^{c} \cap G^{c}) = n((E \cup I \cup G)^{c}) = 200 - n(E \cup I \cup G) = 200 - n[E \cup (I - E) \cup (G - (E \cup I))]\] \[= 200 - [n(E) + n(I - E) + n(G - (E \cup I))] = 200 - [n(E) + (n(I) - n(I \cap E)) + n(G) - n(G \cap (E \cup I))]\] \[= 200 - [n(E) + (n(I) - n(I \cap E)) + n(G) - n[(G \cap E) \cup (G \cap I)]]\] \[= 200 - [n(E) + (n(I) - n(I \cap E)) + n(G) - n(G \cap E) - n(G \cap I) + n(E \cap I \cap G)]\]$= 200 - [142 + 95 + 65 - 50 - 30 - 50 + 20] =$ $28$
e) Compute the probabilities of the events described in a), b) and c)
$\lvert \Omega \rvert = 200$, $n(a) = 42$, $n(b) = 62$, $n(c) = 28$.
$\mathbb{P}(a) = \frac{n(a)}{\lvert \Omega \rvert} = \frac{42}{200} = 0.21$, $\mathbb{P}(b) = \frac{n(b)}{\lvert \Omega \rvert} = \frac{62}{200} = 0.31$, $\mathbb{P}(c) = \frac{n(c)}{\lvert \Omega \rvert} = \frac{28}{200} = 0.14$