Probability and Random Variables (ECE313/ECE317)

Fatima Taousser

Departement of Electrical Engineering and Computer Sciences, UTK ftaousse@utk.edu

Fall 2023

Set-Theory

▷ Fundamentals of Probability

- ► Set theory, Probability spaces.
- ► Probability Axioms.
- ► Discrete uniform law.
- ► Continuous uniform law.

Probability: Set theory and Sample set

Set theory:

- The mathematical basis of probability is the theory of sets. For that we will review material already learned and introduce the notation and terminology as **set, element, union, intersection, and complement**

- A set is a collection of things:

$$A = \{0, 17, 46\}, \ \ \Gamma = \{\Delta, \Box, \bigcirc, \diamondsuit\}$$

- The symbol \in denotes set inclusion. Thus $x \in A$ means "x is an element of the set A."

$$0 \in A$$
, $17 \in A$, $46 \in A$

- The symbol \notin is the opposite of \in . Thus $c \notin A$ means "*c* is not an element of *A* or *c* is not in *A*."

- The notion of a "subset" describes a relationship between two sets: *A* is a subset of *B* if every member of *A* is also a member of *B*. Thus $A \subset B$ is a mathematical notation for the statement "the set *A* is a subset of the set *B*."

> $A \subset B$ if and only if "for all $x \in A \Rightarrow x \in B$ ". $A = \{0, 17, 46\}, B = \{0, 46\} \subset A, B = \{0\} \subset A$

- The definition of set's "equality" is:

A = B if and only if $B \subset A$ and $A \subset B$.

 $\{0,17,46\}=\{17,0,46\}=\{46,0,17\} \ \ \, \text{are all the same set}.$

- The "null" set, or the "empty" set, is a set that has no elements. The notation for the empty set is $\emptyset \implies \emptyset$ is a subset of every set

 $A = \{\emptyset, 0, 17, 46\}$

- The "union" of sets A and B is the set of all elements that are either in A or in B, or in both, and it is denoted by $A \cup B$. Formally, the definition states

 $x \in A \cup B$ if and only if $x \in A$ OR $x \in B$.

 $A = \{0, 17, 46\}, \ B = \{5, 24, 17, 3\} \ \Rightarrow \ A \cup B = \{0, 17, 46, 5, 24, 3\}$

Figure: The union of sets

- The intersection of two sets A and B is the set of all elements which are contained in both A and B, and it is denoted by $A \cap B$. Formally, the definition is

 $x \in A \cap B$ if and only if $x \in A$ AND $x \in B$. $A = \{0, 17, 46\}, B = \{5, 24, 17, 3\} \Rightarrow A \cap B = \{17\}$

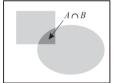


Figure: The intersection of sets

- Remark:
$$(A \cap B) \subset (A \cup B)$$

Fatima Taousser

- The complement of a set A, denoted by A^c , is the set of all elements in the universal set (S) that are not in A. Formally,

 $x \in A^c$ if and only if $x \notin A$.

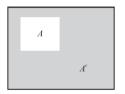


Figure: The complement of sets

$$S = \{0, 3, 12, 17, 21, 35, 40, 46, 51\}, \quad A = \{0, 17, 46\}$$
$$\Rightarrow A^{c} = \{3, 12, 21, 35, 40, 51\}$$

- We have the following properties: $A \cup A^c = S$, $A \cap A^c = \emptyset$

Fatima Taousser

- The difference set is a combination of intersection and complement, such that the difference between A and B is a set A - B that contains all elements of A that are not elements of B. Formally,

$$x \in A - B$$
 if and only if $x \in A$ and $x \notin B$
 $A = \{0, 17, 46\}, B = \{5, 24, 17, 3\} \Rightarrow A - B = \{0, 46\}$

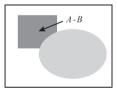
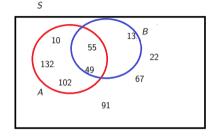


Figure: The difference of sets

Example 1: Let the universal set $S = \{10, 13, 22, 49, 55, 132, 102, 67, 91\}$. Let the subsets $A = \{10, 55, 132, 49, 102\}$ and $B = \{13, 49, 55\}$ of S.



- $A^c = \{13, 22, 67, 91\}$
- $B^c = \{10, 22, 132, 102, 67, 91\}$
- $A \cap B = \{55, 49\}$
- $A \cup B = \{10, 55, 132, 49, 102, 13\}$
- $A B = \{10, 132, 102\}$.

- We have the following properties:
 - 1) $A-B=A\cap B^c$
 - $A B \subset A \cap B^c$?

$$x \in A - B \Rightarrow x \in A \text{ and } x \notin B$$

 $\Rightarrow x \in A$ and $x \in B^c$

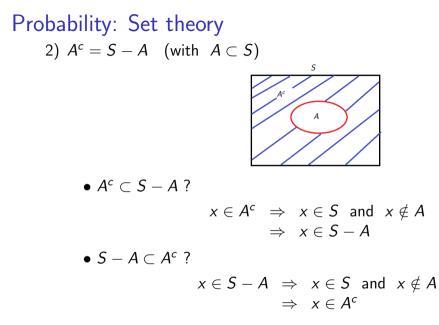
$$\Rightarrow x \in A \cap B^c$$

• $A \cap B^c \subset A - B$? $x \in A \cap B^c \Rightarrow x \in A \text{ and } x \in B^c$

Fatima Taousse

$$\Rightarrow x \in A \text{ and } x \notin B$$

$$\begin{array}{ll} \Rightarrow & x \in A - B \\ & & \\$$



Fatima Taousser Probability and Random V

3) - The DeMorgan's laws:

 $(A \cap B)^{c} = A^{c} \cup B^{c} \quad \text{and} \quad (A \cup B)^{c} = A^{c} \cap B^{c}$ • $(A \cap B)^{c} \subset A^{c} \cup B^{c}$? $x \in (A \cap B)^{c} \Rightarrow x \notin (A \cap B)$ $\Rightarrow x \notin A \text{ or } x \notin B \Rightarrow x \in A^{c} \text{ or } x \in B^{c}$ $\Rightarrow x \in A^{c} \cup B^{c}$

• $A^c \cup B^c \subset (A \cap B)^c$?

 $x \in A^c \cup B^c \Rightarrow x \in A^c \text{ or } x \in B^c$

 $\Rightarrow x \notin A \text{ or } x \notin B \Rightarrow x \notin A \cap B$

 $\Rightarrow x \in (A \cap B)^c$

- In the same way we can proof the second law.

Fatima Taousser

Let the sets of Example 1: $S = \{10, 13, 22, 49, 55, 132, 102, 67, 91\}.$ $A = \{10, 55, 132, 49, 102\}$ $B = \{13, 49, 55\}.$

- $A^c = \{13, 22, 67, 91\}$
- $B^c = \{10, 22, 132, 102, 67, 91\}$
- $A \cap B = \{55, 49\}$
- $A \cup B = \{10, 55, 132, 49, 102, 13\}$
- $A B = \{10, 132, 102\}.$

 $\Rightarrow A^{c} \cup B^{c} = \{13, 22, 67, 91, 10, 132, 102\}$

- $\Rightarrow (A \cap B)^{c} = \{10, 132, 22, 132, 102, 67, 91\}$
- We conclude that $(A \cap B)^c = A^c \cup B^c$
- ⇒ $A^c \cap B^c = \{22, 67, 91\}$ ⇒ $(A \cup B)^c = \{22, 67, 91\}$
- We conclude that $(A \cup B)^c = A^c \cap B^c$

- In working with probability we will frequently refer to two important properties of collections of sets:

mutually exclusive and collectively exhaustive

- A collection of sets $A_1, ..., A_n$ is mutually exclusive if and only if

$$A_i \cap A_j = \emptyset$$
, for all $i \neq j$.

- If we have only two sets in the collection, we say that these sets are disjoints.

A and B are disjoints if and only if $A \cap B = \emptyset$.

Figure: Disjoint sets

- We will use a shorthand for intersection of *n* sets: $\bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$

Fatima Taousser

- A collection of sets $A_1, ..., A_n$ is collectively exhaustive if and only if

$$A_1 \cup A_2 \cup \cdots \cup A_n = S.$$

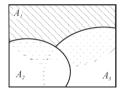


Figure: The union of sets

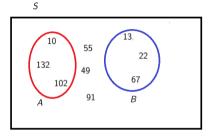
- We will use a shorthand for union of n sets:

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n.$$

Fatima Taousser

- **Example2:** Let the sets $S = \{10, 13, 22, 49, 55, 132, 102, 67, 91\}$.

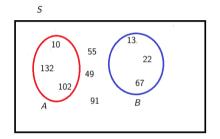
 $A = \{10, 132, 102\}$ $B = \{13, 22, 67\}.$



- $A^c = \{13, 22, 67, 55, 49, 91\}$
- $B^c = \{10, 132, 102, 55, 49, 91\}$
- $A \cap B = \emptyset \Rightarrow$ **A** and **B** are disjoint
- $A \cup B = \{10, 132, 67, 102, 13, 22\} \neq S \rightarrow A$ and B are not collectively exhaustive
- $A-B=A\cap B^c=A$.

Fatima Taousser Probability and

- Example2:

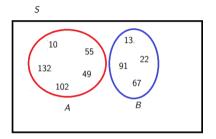


 $\Rightarrow A^{c} \cup B^{c} = \{13, 22, 67, 55, 49, 91, 10, 132, 102\} = S$ $\Rightarrow (A \cap B)^{c} = \emptyset^{c} = S = \{13, 22, 67, 55, 49, 91, 10, 132, 102\}$ $- Which satisfy the Morgan's law : <math>(A \cap B)^{c} = A^{c} \cup B^{c}$ $\Rightarrow A^{c} \cap B^{c} = \{55, 49, 91\}$ $\Rightarrow (A \cup B)^{c} = \{55, 49, 91\}$ - Which satisfy the Morgan's law : $(A \cup B)^{c} = A^{c} \cap B^{c}$

Fatima Taousser

- **Example3:** Let the sets $S = \{10, 13, 22, 49, 55, 132, 102, 67, 91\}$.

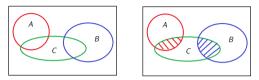
 $A = \{10, 132, 102, 55, 49\}$ $B = \{13, 22, 67, 91\}.$



- $A^c = \{13, 22, 67, 91\} = B$
- $B^c = \{10, 132, 102, 55, 49\} = A$
- $A \cap B = \emptyset \Rightarrow$ **A** and **B** are disjoint
- $A \cup B = S = \{10, 13, 22, 49, 55, 132, 102, 67, 91\} \Rightarrow A$ and B are exhaustive.

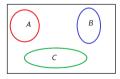
Fatima Taousser

Remark: Consider the following sets



We have $A \cap C \neq \emptyset$, $B \cap C \neq \emptyset$ but $A \cap B \cap C = \emptyset$

- \Rightarrow A, B and c are **not mutually exclusive**.
- Consider the following sets

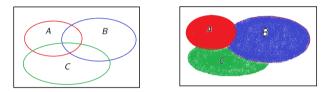


We have $A \cap C = \emptyset$, $B \cap C = \emptyset$ and $A \cap B \cap C = \emptyset$ $\Rightarrow A, B$ and C are **mutually exclusive**.

Fatima Taousser

Remark1:

We can write the union $A \cup B \cup C$ as an union of disjoint sets as follow:



 $A \cup B \cup C = A \cup (B \cap A^c) \cup (C \cap (A^c \cap B^c)) \leftarrow$ union of disjoint sets red part blue part green part

- Note that the green part is computed as:

$$C - (A \cup B) = C \cap (A \cup B)^c = C \cap (A^c \cap B^c) = C \cap A^c \cap B^c$$

Remark2:

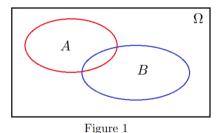
We can write the union $A \cup B \cup C$ as an union of disjoint sets as all the following:

- $A \cup B \cup C = A \cup (C A) \cup (B (A \cup C)) = A \cup (C \cap A^c) \cup (B \cap (A \cup C)^c)$ $= A \cup (C \cap A^c) \cup (B \cap (A^c \cap C^c)) = A \cup (C \cap A^c) \cup (B \cap A^c \cap C^c)$ • $A \cup B \cup C = B \cup (A - B) \cup (C - (A \cup B)) = B \cup (A \cap B^c) \cup (C \cap (A \cup B)^c)$ $= B \cup (A \cap B^c) \cup (C \cap (A^c \cap B^c)) = B \cup (A \cap B^c) \cup (C \cap A^c \cap B^c)$ • $A \cup B \cup C = C \cup (B - C) \cup (A - (B \cup C)) = C \cup (B \cap C^{c}) \cup (A \cap (B \cup C)^{c})$ $= C \cup (B \cap C^{c}) \cup (A \cap (B^{c} \cap C^{c})) = C \cup (B \cap C^{c}) \cup (A \cap B^{c} \cap C^{c})$
- We can make more combinations.

Problem 1: Let the Figure 1:

1) Express $A \cup B$ and $A \cap B$ in different ways.

2) Express $A \cup B$ as an union of disjoints sets.



Problem 1-Solution:

- 1) Let the Figure 1: $A \cup B = \Omega \cap (A \cup B) = (\Omega \cap A) \cup (\Omega \cap B)$ $A \cup B = \Omega - (A \cup B)^{c} = \Omega - (A^{c} \cap B^{c})$ $A \cup B = A \cup (\Omega \cap B^{c})$
 - $A \cup B = A \cup (\Omega B^{c})$ $A \cup B = (\Omega - A^{c}) \cup B$ $A \cup B = (\Omega - A^{c}) \cup (\Omega - B^{c})$ $A \cup B = (A \cap B^{c}) \cup (B \cap A^{c}) \cup (A \cap B)$

$$A \cap B = \Omega \cap (A \cap B) = \Omega \cap A \cap B$$
$$A \cap B = \Omega - (A \cap B)^{c} = \Omega - (A^{c} \cup B^{c})$$
$$A \cap B = A \cap (\Omega - B^{c})$$
$$A \cap B = (\Omega - A^{c}) \cap B$$
$$A \cap B = (\Omega - A^{c}) \cap (\Omega - B^{c})$$

• 2) Express $A \cup B$ as an union of disjoints sets.

$$A \cup B = A \cup (B - A) = A \cup (B \cap A^{c})$$
$$A \cup B = B \cup (A - B) = B \cup (A \cap B^{c})$$
Probability and Random Variables (ECE313/ECE317)

Problem 2: Write in different ways the following sets:

- 1) $A \cup (B \cup C)^c$
- 2) $[A \cup (B^c \cup C^c)]^c$
- 3) $[(A \cap B)^c \cup (B \cap C)]^c$

Problem 2-Solution:

1)
$$A \cup (B \cup C)^c = A \cup (B^c \cap C^c) = (A \cup B^c) \cap (A \cup C^c)$$

2) $[A \cup (B^c \cup C^c)]^c = A^c \cap (B^c \cup C^c)^c = A^c \cap (B^c)^c \cap (C^c)^c = A^c \cap B \cap C$
3) $[(A \cap B)^c \cup (B \cap C)]^c = (A \cap B) \cap (B \cap C)^c = (A \cap B) \cap (B^c \cup C^c)$
 $= (A \cap B \cap B^c) \cup (A \cap B \cap C^c) = (A \cap \emptyset) \cup (A \cap B \cap C^c)$
 $= \emptyset \cup (A \cap B \cap C^c) = (A \cap B \cap C^c)$