
COSC 366
Intro to Computer Security

Lecture 06
Software Security

Dr. Suya
Fall 2024

1

Today’s Class

� Buffer Overflow Overview
� Countermeasures

Returning from functions

3

Caller’s data
arg3
arg2
arg1

loc1
loc2
…

return $eip
prev. $ebp

0xffffffff

0x00000000

$eb
p

$esp

Returning from functions

4

Caller’s data
arg3
arg2
arg1

loc1
loc2
…

0xffffffff

0x00000000

$eb
p

$esp

return $eip
prev. $ebp

Returning from functions

5

Caller’s data
arg3
arg2
arg1

loc1
loc2
…

0xffffffff

0x00000000

$eb
p

$esp
return $eip
prev. $ebp

Returning from functions

6

Caller’s data
arg3
arg2
arg1

loc1
loc2
…

0xffffffff

0x00000000

$eb
p

$esp
return $eip
prev. $ebp

Returning from functions

7

Caller’s data
arg3
arg2
arg1

loc1
loc2
…

0xffffffff

0x00000000

$eb
p

$esp
return $eip
prev. $ebp

1. The next instruction is to “remove” the arguments off the stack
2. And now we’re back where we started

Stack & functions: Summary
Calling function (before calling):
1. Push arguments onto the stack (in reverse)
2. Push the return address, i.e., the address of the instruction you

want run after control returns to you: e.g., %eip + 2
3. Jump to the function’s address
Called function (when called):
1. Push the old frame pointer onto the stack: push %ebp
2. Set frame pointer %ebp to where the end of the stack is right

now: %ebp=%esp
3. Push local variables onto the stack; access them as offsets from

%ebp
Called function (when returning)
1. Reset the previous stack frame: %esp = $ebp; pop %ebp
2. Jump back to return address: pop %eip

8

BUFFER OVERFLOW

9

Common functions that cause
overflow
� Recall: In C, string are character arrays

terminated with a null character
◦ ‘\0’ which is represented by a byte of all

zeroes

10

Common functions that cause
overflow

11

Common functions that cause
overflow

12

arg1

00 00 00 00

return addr
prev. $ebp

0xffffffff

0x00000000

00 00 00 00
00 00 00 00buffer

Common functions that cause
overflow

13

arg1

d e f i

return addr
prev. $ebp

0xffffffff

0x00000000

\x20 i s \x20
T h i sbuffer

Common functions that cause
overflow

14

Common functions that cause
overflow

15

o n g e

d e f i

l y l
n i t e

0xffffffff

0x00000000

i s
T h i sbuffer

….

return
addr.

SEGFAULT

What’s the common things?

� Functions does not check the length.
◦ Technically, it does not limit the size of strings

(or buffer) of src to dest.

Some Unsafe C Lib Functions

strcpy (char *dest, const char *src)
strcat (char *dest, const char *src)
gets (char *s)
scanf (const char *format, …)
sprintf (conts char *format, …)

17

What’s the common things?

� Functions does not check the length.
◦ Technically, it does not limit the size of strings

(or buffer) of src to dest.

� User-supplied strings can result in serious
problems

User-supplied strings

� In these examples, we were providing our
own strings

� But they come from users in myriad ways
◦ Text input
◦ Network packets
◦ Environment variables
◦ File input
◦ …

19

What Can An Adversary Do With
This?● Two general forms of attack
● Option 1) Change the value of local variables

outside of normal control flow

What Can An Adversary Do With
This?
● Two general forms of attack
● Option 1) Change the value of local variables outside of normal

control flow
○ For example an account number stored on the stack
○ Or an integer storing say the current EUID stored on the stack…

○ Can change values of variables in higher (calling) stack frames as well
■ A little more complicated, but certainly not impossible

● Option 2) Alter what the return address points to
○ Pointing it to code we want to run
○ Where could we place such code???

Consequences of Buffer Overflow

� Overwriting return address with some
random address can point to :
◦ Invalid instruction
◦ Non-existing address
◦ Access violation
◦ Attacker’s code Malicious code

to gain access

23

Shellcode

● Generic name used for “adversarial machine instructions”
● Most common form was code that ran exec(“/bin/sh”);

● Opening step in building is to write a short program that does what
you want

● Dump the machine code
● Need to adjust so there are no null bytes in it

● In practice there are repositories of this stuff on the Internet
○ Alphanumeric shellcode exists
○ “English” shellcode exists

Shellcode

What if they are malicious code?

26

Creation of The Malicious Input

Task A : Find the offset distance between the base of the buffer and return address.
Task B : Find the address to place the shellcode

Challenge

� We don’t know where the shell code is?
� Solution?
◦ NOP (0x90)

NOP Slides (0x90)

● Sometimes it is hard to know exactly where a buffer will
be

● Every instruction in your shellcode needs to execute
● NOPs have zero impact on execution
● Running a whole bunch of NOPs and then your shellcode

is the same as just running your shellcode
● Placing a whole bunch of NOPs before your shellcode

makes your life easier
● The ret addr just needs to point to any of the NOPs

Task B : Address of Malicious Code

• To increase the chances of jumping to
the correct address, of the malicious
code, we can fill the buf with NOP
instructions and place the malicious
code at the end of the buffer.

Note : NOP- Instruction that does
nothing.

31

Countermeasures

Countermeasures
Developer approaches:

• Use of safer functions like strncpy(), strncat() etc, safer dynamic link libraries

that check the length of the data before copying.

OS approaches:

• ASLR (Address Space Layout Randomization)

Compiler approaches:

• Stack-Guard

Hardware approaches:

• Non-Executable Stack

Developer approaches
� Use of safer functions like strncpy(),

strncat() etc, safer dynamic link libraries
that check the length of the data before
copying.

Strncpy()

� Description
◦ The strcpy() function copies the string

pointed to by src, including the terminating
null byte ('\0'), to the buffer pointed to by dest.
The strings may not overlap, and the
destination string dest must be large enough
to receive the copy. Beware of buffer
overruns! (See BUGS.)
◦ The strncpy() function is similar, except that

at most n bytes of src are copied.

Simple implementation of strncpy

Security problems of strncpy
� C strings are supposed to end in a \0 !
� but it does not guarantee that the resulting

string will be null-terminated.
◦ If src is equal to or greater than n, won’t have

null-terminator
� Buffer overread.
◦ Function that expects \0 will keep reading

adjacent memory
� Strlcpy() is a safer alternative.
◦ ensures that the resulting string is always null-

terminated (adds \0 after certain size such as n-1)

Wait! What’s another problem?

� strlcpy() looks safe (as the prof. said that)
� What might be the potential security

problem here?

length specified by programmers
� What if I have changed the length of name to

4?
◦ char name[4]
◦ strlcpy(name,”helloo”, 6)

� This would result in an overflow.
� Why?
◦ in C, an array is simply a contiguous region of

memory
◦ In C, the programmer is the one responsible for

keeping track of how large an array is, and for
providing the size to functions.

What’s the solution?
� May wonder? sizeof()?
◦ sizeof(name)

� sizeof is telling you how large x is, but x can be a
pointer to a buffer.

� How about strlen()?
◦ strlen(name)
◦ strlen merely tries to count the number of bytes until it

reaches a zero-byte (in memory), not necessarily buffer size
◦ What’s the problem?
◦ Not useful with non-ASCII data (raw binary data, images)

� Do not have null-terminator (zero-bytes)

Countermeasures
Developer approaches:

• Use of safer functions like strncpy(), strncat() etc, safer dynamic link libraries

that check the length of the data before copying.

OS approaches:

• ASLR (Address Space Layout Randomization)

Compiler approaches:

• Stack-Guard

Hardware approaches:

• Non-Executable Stack

System & GCC options
Randomize virtual

address space

Principle of ASLR

Difficult to guess %ebp address and address of the malicious code

Difficult to guess the stack address in the memory.

To randomize the start location of the stack that is every time the code is
loaded in the memory, the stack address changes.

Address Space Layout
Randomization

Address Space Layout
Randomization : Working

1

3

2

ASLR : Defeat It

Defeat it by running the vulnerable code in an infinite loop.

ASLR : Defeat it

On running the script for about 19 minutes
on a 32-bit Linux machine, we got the
access to the shell (malicious code got
executed).

Countermeasures
Developer approaches:

• Use of safer functions like strncpy(), strncat() etc, safer dynamic link

libraries that check the length of the data before copying.

OS approaches:
• ASLR (Address Space Layout Randomization)

Compiler approaches:

• Stack-Guard

Hardware approaches:

• Non-Executable Stack

System & GCC options

-f: flag
no-stack-protector

Stack guard

� Another buffer overflow attack pattern?

Ref.: https://www.redhat.com/en/blog/security-technologies-stack-smashing-protection-stackguard

Stack guard

Execution with StackGuard

Canary check done by compiler.

Stack guard (canary)
Canaries in coal mines:
Historically, miners would bring
canaries into coal mines because
the birds were more sensitive to
toxic gases like carbon monoxide.
The birds, due to their small size,
high metabolism, and rapid
breathing, would react to the
presence of dangerous gases and
die before the miners were
affected. This gave the miners an
early warning system to evacuate or
take precautions, preventing harm.

52

Stack Canaries
● Insert a random value between the (local) data

portions of the stack and stored prev. %ebp and
return address.

● Before returning ensure that the value is
preserved

● If not, kill process
● Issues:

○ Does not protect other variables on the stack
○ Are other ways to corrupt exact locations on the

stack
■ Example: format string vulnerabilities

Countermeasures
Developer approaches:

• Use of safer functions like strncpy(), strncat() etc, safer dynamic

link libraries that check the length of the data before copying.

OS approaches:

• ASLR (Address Space Layout Randomization)

Compiler approaches:

• Stack-Guard

Hardware approaches:

• Non-Executable Stack

System & GCC options

-z: compiler option prefix
execstack: allow stack to be executable

Non-executable stack

• NX bit, standing for No-eXecute feature
in CPU separates code from data which
marks certain areas of the memory (e.g.,
stack or heap) as non-executable.

• This countermeasure can be defeated
using a different technique called
Return-to-libc attack (there is a
separate chapter on this attack)

OTHER SOFTWARE
VULNERABILITIES

57

RETURN-TO-LIBC
ATTACKS

Non-executable Stack

Calls shellcode

● With executable stack

● With non-executable stack

Non-executable Stack (Demo)

Any idea?

� Stack is no longer executable…
� What can the attacker do?
� What if they use system(“/bin/sh”)?
◦ As long as we can call this system function, it

would be simple.

Steps: system(“/bin/sh”)
� Find the address of system()
◦ To overwrite return address with system()’s

address.

� Find the address of the “/bin/sh” string
◦ To run command “/bin/sh” from system()

� Construct arguments for system()
◦ To find location in the stack to place “/bin/sh”

address (argument for system())

Task A : To Find system()’s
Address.
● In Linux, when a program runs, the libc library

will be loaded into memory.
● Debug the vulnerable program using gdb
● Using p (print) command, print address of
system() and exit().

Task B : To Find “/bin/sh” String
Address

● Using buffer overflow à “/bin/sh” is
overwritten in memory

● Can you recall how the stack layout looks like?

int attack(int str) {
buf[4];
strcpy(buf, str);

}

Caller’s data
arg1

return $eip
prev. $ebp

buf[]

….
…

0xFFFFFFFF

0x00000000

$eb
p

$esp

int attack(int str) {
buf[4];
strcpy(buf, str);

}

Caller’s data
arg1

return $eip
prev. $ebp

buf[]

….
….

0xFFFFFFFF

0x00000000

$eb
p

$esp

Caller’s data
arg1

return $eip
prev. $ebp

buf[]

….
….

Caller’s data
arg1

return $eip
prev. $ebp

buf[]

….

0xFFFFFFFF

0x00000000

$ebp

$esp

Caller’s data
arg1

return $eip
prev. $ebp

buf[]

….

� Find the address
of system()

� Overwrite return
address with
system()’s
address.
◦ 0xb7e5f430

Caller’s data
arg1

return $eip
prev. $ebp

buf[]

….

0xFFFFFFFF

0x00000000

$ebp

$esp

Caller’s data
arg1

0xb7e5f430

prev. $ebp

buf[]

….

• Find the address of
system()

• Overwrite return address
with system()’s address.

• 0xb7e5f430

Caller’s data
arg1

return $eip
prev. $ebp

buf[]

….

0xFFFFFFFF

0x00000000

$ebp

$esp

Caller’s data
arg1

0xb7e5f430

prev. $ebp

buf[]

….

• Overwrite return address
with system()’s address.

• Overwrite the address of
the “/bin/sh” string

Caller’s data
arg1

return $eip
prev. $ebp

buf[]

….

0xFFFFFFFF

0x00000000

$ebp

$esp

Caller’s data
“/bin/sh”

0xb7e5f430
prev. $ebp

buf[]

….

• Overwrite return address
with system()’s address.

• Overwrite the address of
the “/bin/sh” string

Caller’s data
arg1

return $eip
prev. $ebp

buf[]

….

0xFFFFFFFF

0x00000000

$ebp

$esp

Caller’s data
“/bin/sh”

0xb7e5f430
prev. $ebp

buf[]

….

Caller’s data
“/bin/sh”

0xb7e5f430

prev. $ebp

buf[]

….
$eb
p

$esp

Caller’s data
arg1

return $eip
prev. $ebp

buf[]

….

0xFFFFFFFF

0x00000000

$ebp

$esp

Caller’s data
“/bin/sh”

0xb7e5f430

prev. $ebp

buf[]

….

Caller’s data
“/bin/sh”

0xb7e5f430

prev. $ebp

buf[]

….
$eb
p

$esp

Caller’s data
arg1

return $eip
prev. $ebp

buf[]

….

0xFFFFFFFF

0x00000000

$ebp

$esp

Caller’s data
“/bin/sh”

0xb7e5f430

prev. $ebp

buf[]

….

Caller’s data
“/bin/sh”

0xb7e5f430

prev. $ebp
$eb
p

$esp

Caller’s data
arg1

return $eip
prev. $ebp

buf[]

….

0xFFFFFFFF

0x00000000

$eb
p

$esp

Caller’s data
“/bin/sh”

0xb7e5f430

prev. $ebp

buf[]

….

Caller’s data
“/bin/sh”

0xb7e5f430

$eb
p

$esp

Caller’s data
arg1

return $eip
prev. $ebp

buf[]

….

0xFFFFFFFF

0x00000000

$eb
p

$esp

Caller’s data
“/bin/sh”

0xb7e5f430

prev. $ebp

buf[]

….

Caller’s data
“/bin/sh”

0xb7e5f430

$eb
p

$esp

Caller’s data
arg1

return $eip
prev. $ebp

buf[]

….

0xFFFFFFFF

0x00000000

$ebp

$esp

Caller’s data
“/bin/sh”

0xb7e5f430

prev. $ebp

buf[]

….

Caller’s data
“/bin/sh”

0xb7e5f430

$eb
p

$esp

Caller’s data
“/bin/sh”

Ret. $eip

System()

Caller’s data
arg1

return $eip
prev. $ebp

buf[]

….

0xFFFFFFFF

0x00000000

$ebp

$esp

Caller’s data
“/bin/sh”

0xb7e5f430

prev. $ebp

buf[]

….

Caller’s data
“/bin/sh”

0xb7e5f430

$eb
p
$esp

Caller’s data
“/bin/sh”

Ret. $eip
Prev. ebp

….

System()

Caller’s data
arg1

return $eip
prev. $ebp

buf[]

….

0xFFFFFFFF

0x00000000

$ebp

$esp

Caller’s data
“/bin/sh”

0xb7e5f430

prev. $ebp

buf[]

….

Caller’s data
“/bin/sh”

0xb7e5f430

$eb
p
$esp

Caller’s data
“/bin/sh”

Ret. $eip
Prev. ebp

….

System()
load $ebp+8

FORMAT STRING
VULNERABILITIES

Format String Vulnerabilities

#include <stdio.h>
int main(int argc, char* argv[]) {

if(argc > 1) {
printf(argv[1]);

}

return 0;
}

./example "Hello World %p %p %p %p %p %p"

Hello World 000E133E 000E133E 0057F000 CCCCCCCC CCCCCCCC CCCCCCCC

Format String
printf() - To print out a string according to a
format.

int printf(const char *format,
…);

The argument list of printf() consists of :
● One concrete argument format
● Zero or more optional arguments

Hence, compilers don’t complain if less arguments
are passed to printf() during invocation.

How printf() Works

● Here, printf() has three optional arguments. Elements starting with “%” are
called format specifiers.

● printf() scans the format string and prints out each character until “%” is
encountered.

● printf() calls va_arg(), which returns the optional argument pointed by
va_list and advances it to the next argument.

How printf() Works

● When printf() is invoked, the
arguments are pushed onto the
stack in reverse order.

● When it scans and prints the
format string, printf() replaces
%d with the value from the first
optional argument and prints
out the value.

● va_list is then moved to the
position 2.

Missing Optional Arguments

● va_arg() macro doesn’t
understand if it reached
the end of the optional
argument list.

● It continues fetching data
from the stack and
advancing va_list pointer.

Vulnerable Program’s Stack

Inside printf(),
the starting point of
the optional
arguments (va_list
pointer) is the
position right above
the format string
argument.

What Can We Achieve?

Attack 1 : Crash program
Attack 2 : Print out data on the stack
Attack 3 : Change the program’s data in the
memory
Attack 4 : Change the program’s data to specific
value
Attack 5 : Inject Malicious Code

Attack 1 : Crash Program

● Use input: %s%s%s%s%s%s%s%s
● printf() parses the format string.
● For each %s, it fetches a value where va_list

points to and advances va_list to the next
position.

● As we give %s, printf() treats the value as
address and fetches data from that address. If the
value is not a valid address, the program crashes.

Attack 2 : Print Out Data on the
Stack

● Suppose a variable on the stack contains a secret
(constant) and we need to print it out.

● Use user input: %x%x%x%x%x%x%x%x
● printf() prints out the integer value pointed by

va_list pointer and advances it by 4 bytes.
● Number of %x is decided by the distance between the

starting point of the va_list pointer and the variable. It
can be achieved by trial and error.

Attack 3 : Change Program’s Data in
the Memory
Goal: change the value of var variable from 0x11223344 to
some other value.
● %n: Writes the number of characters printed out so far

into memory.
● printf(“hello%n”,&i) ⇒When printf() gets to
%n, it has already printed 5 characters, so it stores 5 to
the provided memory address.

● %n treats the value pointed by the va_list pointer as a
memory address and writes into that location.

● Hence, if we want to write a value to a memory location,
we need to have it’s address on the stack.

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[]){
unsigned short s;
int i;
char buf[80];

i = atoi(argv[1]);
s = i;
if(s >= 80){ /* [w1] */

printf("Oh no you don't!\n");
return -1;

}
printf("s = %d\n", s);
memcpy(buf, argv[2], i);
buf[i] = '\0';
return 0;

}

Integer Overflows

#include <stdio.h>
#include <string.h>
int main(int argc, char *argv[]){

unsigned short s;
int i;
char buf[80];

i = atoi(argv[1]);
s = i;
if(s >= 80){ /* [w1] */

printf("Oh no you don't!\n");
return -1;

}
printf("s = %d\n", s);
memcpy(buf, argv[2], i);
buf[i] = '\0';
return 0;

}

int myfunction(int *array, int len){
int *myarray, i;
myarray = malloc(len * sizeof(int)); /* [1] */
if(myarray == NULL){

return -1;
}
for(i = 0; i < len; i++){ /* [2] */

myarray[i] = array[i];
}
return myarray;

}

Integer Overflows
int myfunction(int *array, int len){

int *myarray, i;
myarray = malloc(len * sizeof(int)); /* [1] */
if(myarray == NULL){

return -1;
}
for(i = 0; i < len; i++){ /* [2] */

myarray[i] = array[i];
}
return myarray;

}

Integer Overflows
● Casting down in width is dangerous

○ Is saving those bits really needed?

● Sanity check the results of computations
○ Especially if the inputs come from a user
○ Especially if you are about to do something critical with the

result

● Mixing signed and unsigned is also dangerous

● Where needed use safe functions if they exist in your
language
○ Example: Math.addExact in java

● Fun fact: Python does not really have these issues

