
COSC 366
Intro to Computer Security

Lecture 04
Software Security

Dr. Suya
Fall 2024

1

Review what we’ve learned last
week.
� Function
� Memory layout
� Stack layout

Function

� Function name
◦ Main

� Arguments
◦ none

� Local variables
◦ E.g., a, b

� Return address
◦ Invisible

� Return value
◦ 1

3

All programs are stored in memory

4

4G

0

0xffffffff

0x00000000

The process’s view of
memory is that
it owns all of it

In reality, these are
virtual address; the
OS/CPU map them
to physical
addresses.

Stack & Heap grow in opposite
directions

5

4G

0

0xffffffff

0x00000000

Text

DataKnown at
compile time

Stack

const int x=10;

int f() {
int x;

…

Heap malloc(4)

Dynamically sized
at runtime

Program Memory Stack

6

ptr points to
the memory
here

a,b, ptr

y

x

Stack layout when calling function

7

Caller’s data
arg3
arg2
arg1

loc1
loc2
…

???
???

0xffffffff

0x00000000

EBP (Base Pointer)

8

Caller’s data
arg3
arg2
arg1

loc1
loc2
…

???
???Q) Where is loc2?

What’s the specific address?
A) But we can know loc2 is always
8bytes before “???”s è addr of ??? - 8B

0xffffffff

0x00000000

$eb
p

Stack layout when calling function

9

Caller’s data
arg3
arg2
arg1

loc1
loc2
…

???
???

0xffffffff

0x00000000

Q) What are “???” ?

First, we need $ebp
Second, we need a return address

Function Call Stack

10

void f(int a, int b)
{

int x;
}
void main()
{

f(1,2);
printf("hello world");

}

Returning from functions

11

Caller’s data
arg3
arg2
arg1

loc1
loc2
…

return $eip
prev. $ebp

0xffffffff

0x00000000

$eb
p

$esp

Returning from functions

12

Caller’s data
arg3
arg2
arg1

loc1
loc2
…

0xffffffff

0x00000000

$eb
p

$esp

return $eip
prev. $ebp

Returning from functions

13

Caller’s data
arg3
arg2
arg1

loc1
loc2
…

0xffffffff

0x00000000

$eb
p

$esp
return $eip
prev. $ebp

Returning from functions

14

Caller’s data
arg3
arg2
arg1

loc1
loc2
…

0xffffffff

0x00000000

$eb
p

$esp
return $eip
prev. $ebp

Returning from functions

15

Caller’s data
arg3
arg2
arg1

loc1
loc2
…

0xffffffff

0x00000000

$eb
p

$esp
return $eip
prev. $ebp

1. The next instruction is to “remove” the arguments off the stack
2. And now we’re back where we started

Stack & functions: Summary

Calling function (before calling):
1. Push arguments onto the stack (in

reverse)
2. Push the return address, i.e., the

address of the instruction you want run
after control returns to you: e.g., %eip + 2

3. Jump to the function’s address

16

Stack & functions: Summary
Calling function (before calling):
1. Push arguments onto the stack (in reverse)
2. Push the return address, i.e., the address of the

instruction you want run after control returns to you:
e.g., %eip + 2

3. Jump to the function’s address
Called function (when called):
1. Push the old frame pointer onto the stack: push

%ebp
2. Set frame pointer %ebp to where the end of the

stack is right now: %ebp=%esp
3. Push local variables onto the stack; access them as

offsets from %ebp

17

Stack & functions: Summary
Calling function (before calling):
1. Push arguments onto the stack (in reverse)
2. Push the return address, i.e., the address of the instruction you

want run after control returns to you: e.g., %eip + 2
3. Jump to the function’s address
Called function (when called):
1. Push the old frame pointer onto the stack: push %ebp
2. Set frame pointer %ebp to where the end of the stack is right

now: %ebp=%esp
3. Push local variables onto the stack; access them as offsets from

%ebp
Called function (when returning)
1. Reset the previous stack frame: %esp = $ebp; pop %ebp
2. Jump back to return address: pop %eip

18

Today’s class

� Buffer Overflow Attack
◦ We will focus on only Stack (it happens in

heap though)

19

BUFFER OVERFLOW

20

Buffer overflows: High level

21

Buffer overflows: High level

� Buffer
◦ Contiguous set of a given data type
◦ Common in C
� E.g., all strings are buffers of char’s

� Overflow
◦ Put more into the buffer than it can hold

� Where does the extra data go?
◦ Now, you are experts in memory layouts…

22

Buffer Overflow

23

How can we overwrite a value
in an adjacent buffer?

How about this?
àA[8] = ‘A’
àA[9] = ‘B’

https://onlinegdb.com/Bj0Y0JwI-

https://onlinegdb.com/Bj0Y0JwI-

Common functions that cause overflow

� Recall: In C, string are character arrays
terminated with a null character
◦ ‘\0’ which is represented by a byte of all

zeroes (not applicable for other data types)

24

Common functions that cause overflow

25

Common functions that cause overflow

- What if the string to copy is larger than
the size of buffer?

26

Common functions that cause overflow

27

arg1

00 00 00 00

return addr
prev. $ebp

0xffffffff

0x00000000

00 00 00 00
00 00 00 00buffer

Common functions that cause overflow

28

arg1

d e f i

return addr
prev. $ebp

0xffffffff

0x00000000

i s
T h i sbuffer

Common functions that cause overflow

29

Common functions that cause overflow

30

o n g e

d e f i

l y l
n i t e

0xffffffff

0x00000000

i s
T h i sbuffer

….

return
addr.

SEGFAULT

Stored
ebp

Example of a Stack-based Buffer Overflow

� Suppose a web server contains a function:
void func(char *str) {

char buf[128];

strcpy(buf, str);
do_something(buf);

}

� When the function is invoked, the stack
looks like:

� What if *str is 136 bytes long? After
strcpy:

strret-addrp. ebpbuf

strbuf p. ebp ret

What is common in these examples?

� Functions does not check the length.

Some Unsafe C Lib Functions

strcpy (char *dest, const char *src)
strcat (char *dest, const char *src)
gets (char *s)
scanf (const char *format, …)
sprintf (char *str, const char *format, …)

33

What’s the common things?

� Functions does not check the length.
� User-supplied strings can result in serious

problems

User-supplied strings

� In these examples, we were providing our
own strings

� But they come from users in myriad ways
◦ Text input
◦ Network packets
◦ Environment variables
◦ File input
◦ …

35

What Can An Adversary Do With
This?

● Two general forms of attack
● Option 1) Change the value of local variables

outside of normal control flow

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void hackthis() {
int key = 0xabcd1234;
char buf[32];
printf("please hack me: ");
gets(buf); // hint: hack this!
if(key == 0xbeefcafe) {

printf("you got me\n");
system("ping 8.8.8.8");

}
else {

printf("It doesn't work.\n");
}

}

int main(int argc, char* argv[]) {
hackthis();
return 0;

}

AAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAA\xfe\xca\xef\xbe
(little-endian system)

What Can An Adversary Do With
This?
● Two general forms of attack
● Option 1) Change the value of local variables outside of normal

control flow
○ For example an account number stored on the stack
○ Or an integer storing say the current EUID stored on the stack…

○ Can change values of variables in higher (calling) stack frames as well
■ A little more complicated, but certainly not impossible

● Option 2) Alter what the return address points to
○ Pointing it to code we want to run
○ Where could we place such code???

Consequences of Buffer Overflow

� Overwriting return address with some
random address can point to :
◦ Invalid instruction
◦ Non-existing address
◦ Access violation
◦ Attacker’s code
� Malicious code to gain access

39

Shellcode
● Generic name used for “adversarial machine instructions”
● Most common form was code that ran exec(“/bin/sh”);

● Opening step in building is to write a short program (e.g., in C) that
does what you want

○ open a network connection
● Dump the machine code

○ machine code is what is injected as shellcode
● Need to adjust so there are no null bytes in it

○ (C) null bytes are interpreted as string terminators and stop early
● In practice there are repositories of this stuff on the Internet

○ Alphanumeric shellcode exists: if restricted to alphanumereics
○ “English” shellcode exists: if filters suspicious code

Shellcode

Clears %eax, set to 0, act
as NULL terminator for

string code “/bin/sh”

Push NULL byte

//sh
/bin

A register stores the address of
first argument to a function

Push NULL byte to
indicate end of arguments

What if they are malicious code?

42

Environment Setup

Use shell commands to setup
• have sufficient privilege
• exploit buffer overflow

Creation of The Malicious Input

Task A : Find the offset distance between the base of the buffer and return address.
Task B : Find the address to place the shellcode

Challenge

� We don’t know where the shell code is?
◦ The memory layout can different from what was

anticipated by the attacker (e.g. wrongly guessing
user commands, additional environment variables)

� Also, may not exactly know where the
return address is

� Solution?
◦ NOP (0x90)
◦ Using multiple (nearby) return addresses,

combine with NOP

NOP Slides (0x90)
● Sometimes it is hard to know exactly where a buffer

will be
● Every instruction in your shellcode needs to

execute
● NOPs have zero impact on execution
● Running a whole bunch of NOPs and then your

shellcode is the same as just running your shellcode
● Placing a whole bunch of NOPs before your

shellcode makes your life easier
● The ret addr just needs to point to any of the NOPs

Task B : Address of Malicious Code

• To increase the chances of jumping to
the correct address, of the malicious
code, we can fill the buf with NOP
instructions and place the malicious
code at the end of the buffer.

Note : NOP- Instruction that does
nothing.

