
COSC 366

Intro to Computer Security

Lecture 04

Software Security

Dr. Suya

Fall 2024

1

Today’s Class

 Software security overview

 Refresher: function calls, memory layout

Overview

3

Why Software Security First

 Programs and their code are the basis of

computing

 Most people today use off the shelf programs

 Programs are written by humans

 Flaws occur regularly or sporadically despite

testing

What We Will Study

 Unintentional programming oversights

- benign program flaws are often exploited for

malicious impact

- when this happens, which of CIA is compromised?

- usually a stepping stone to something bigger

 Malicious programs - malware

Unintentional Programming

Oversights
 Buffer overflow

 Other programming oversights

 Countermeasures

The Most Infamous: Buffer Overflow

 A buffer overflow is a bug that affects low-level
language, typically C and C++

 A program with bug will normally just crash

- In terms of CIA, what does it compromise?

 If under malicious attack, it can be exploited to
- steal private information

- corrupt valuable information

- inject and execute code of the attacker’s choice

What Is Buffer Overflow

 What is buffer

- contiguous memory associated with a variable or field

- e.g., when you type in something, it’s held in the buffer
before being processed

- common in C: null-terminated strings that are arrays of chars

 What is buffer overflow

- read/write more than a buffer can hold

 Where are the extra data go?
- we will find out

Why Do We Study It
 It has a long history and gives a good lesson

 It is still very relevant today
- C and C++ are still popular

- buffer overflows still occur regularly

Critical Systems in C/C++

 Most OS kernels and utilities
- fingerd, X window server, shell

 Many high-performance servers
- Microsoft IIS, Apache httpd, nginx

- Microsoft SQL server, MySQL, redis

 Many embedded systems
- industrial control systems (e.g., SCADA), automobiles,
airplanes, smartphones

History of Buffer Overflows

 1988: Morris worm

- 10% of the Internet (6,000 machines) infected

 2001: CodeRed: exploited MS-IIS server

- 300,000 machines infected in 14 hours

 2003: SQL Slammer: exploited MS-SQL server

- 75,000 machines infected in 10 minutes

 2014: Heartbleed

- 17% (half a million) secure web servers infected upon
disclosure

Refresher

 What are function calls?

 How is program data laid out in memory

 What does call stack look like

 What effect does calling (and returning from) a
function have on memory?

 We will use x86 32-bit Linux processor model as
example

FUNCTION

13

What’s function?

 Assigns to each element of X exactly

one element of Y

 A group of statements that together

perform a task.

 Every C program has at least one

function, which is main(), and all the

most trivial programs can define

additional functions.

Function

 Function name

◦ Main

 Arguments

◦ none

 Local variables

◦ E.g., a, b

 Return address

◦ Invisible

 Return value

◦ 1

15

Function call/return

16

foo(...) {

…

bar();

…

}

bar(...) {

…

…

}

main(...) {

…

foo(…);

…

}

main:

jmp foo

foo:

bar:

jmp back

1

2

4 5

3

6

7

MEMORY LAYOUT

17

All programs are stored in memory

18

4G

0

0xffffffff

0x00000000

All programs are stored in memory

19

4G

0

0xffffffff

0x00000000

The process’s view of

memory is that

it owns all of it

Can the 32-bit system have more than this memory space?

Wait!

 How would it be possible for two programs

to run at the same time on your Windows

or MacOS?

◦ May conflict your program with other programs

◦ You have a limited memory like 4GB, your

program needs more memory space than 4GB.

◦ How can we overcome this challenge?

Virtual Memory

 Freeing applications from having to

manage a shared memory space.

◦ You don’t worry about managing memory (at

low level) when programming  Process

isolation, simplifying application writing,

simplifying compilation, linking, loading

 Able to conceptually use more memory

than might be physically available

Virtual Memory

All programs are stored in memory

23

4G

0

0xffffffff

0x00000000

The process’s view of

memory is that

it owns all of it

In reality, these are

virtual address; the

OS/CPU map them

to physical

addresses.

The instructions are stored in

memory

24

4G

0

0xffffffff

0x00000000

Text

…

movl %esp,%ebp

movl

12(%ebp),%eax

addl 8(%ebp),%eax

…

The instructions are stored in

memory

25

4G

0

0xffffffff

0x00000000

Text

Data are stored in memory

26

4G

0

0xffffffff

0x00000000

Text

Data const int x=10;

Data are stored in memory

27

4G

0

0xffffffff

0x00000000

Text

Data const int x=10;

Data are stored in memory

28

4G

0

0xffffffff

0x00000000

Text

Data
Known at

compile time

const int x=10;

Stack (Local variables)

29

4G

0

0xffffffff

0x00000000

Text

Data
Known at

compile time

Stack

const int x=10;

int f() {

int x;

…

Heap (Dynamic memory)

30

4G

0

0xffffffff

0x00000000

Text

DataKnown at

compile time

Stack

const int x=10;

int f() {

int x;

…

Heap malloc(4)

Heap (Dynamic memory)

31

4G

0

0xffffffff

0x00000000

Text

DataKnown at

compile time

Stack

const int x=10;

int f() {

int x;

…

Heap malloc(4)

Dynamically sized

at runtime

Stack & Heap grow in opposite

directions

32

4G

0

0xffffffff

0x00000000

Text

DataKnown at

compile time

Stack

const int x=10;

int f() {

int x;

…

Heap malloc(4)

Dynamically sized

at runtime

Program Memory Stack

33

ptr points to

the memory

here

a,b, ptr

y

x

STACK LAYOUT

34

Stack layout when calling function

35

Caller’s data

arg3
arg2

arg1

Arguments pushed

in reverse order of code

0xffffffff

0x00000000

Stack layout when calling function

36

Caller’s data

arg3
arg2

arg1

Arguments pushed

in reverse order of code

loc1
loc2

…

Local variables pushed

in the same order

as they appear in the code

0xffffffff

0x00000000

Stack layout when calling function

37

Caller’s data

arg3
arg2

arg1

Arguments pushed

in reverse order of code

loc1
loc2

…

Local variables pushed

in the same order

as they appear in the code

???
???

0xffffffff

0x00000000

Stack layout when calling function

38

Caller’s data

arg3
arg2

arg1

Arguments pushed

in reverse order of code

loc1
loc2

…

Local variables pushed

in the same order

as they appear in the code

???

???

Two values between the args

and the local variables

0xffffffff

0x00000000

EBP (EXTENDED BASE
POINTER)

39

What’s the addr. of loc2?

40

Caller’s data

arg3
arg2

arg1

loc1
loc2

…

???
???Q) Where is loc2?

What’s the specific address?

0xffffffff

0x00000000

What’s the addr. of loc2?

41

Caller’s data

arg3
arg2

arg1

loc1
loc2

…

???
???Q) Where is loc2?

What’s the specific address?

A) We don’t know before running

since undecidable at compile time

0xffffffff

0x00000000

What’s the addr. of loc2?

42

Caller’s data

arg3
arg2

arg1

loc1
loc2

…

???
???Q) Where is loc2?

What’s the specific address?

A) But we can know loc2 is always

8bytes before “???”s  addr of ??? - 8B

0xffffffff

0x00000000

4B

4B

4B
4B

EBP (Base Pointer)

43

Caller’s data

arg3
arg2

arg1

loc1
loc2

…

???
???Q) Where is loc2?

What’s the specific address?

A) But we can know loc2 is always

8bytes before “???”s  addr of ??? - 8B

0xffffffff

0x00000000

$ebp

EBP (Base Pointer): Notation

 %ebp: A memory address

 (%ebp): The value at memory address

%ebp (like dereferencing a pointer)

44

EBP (Base Pointer)

45

Caller’s data

arg3
arg2

arg1

loc1
loc2

…

???
???Q) where is loc2?

What’s the specific address (and content)?

A) -8 (%ebp)

0xffffffff

0x00000000

$ebp

Stack layout when calling function

46

Caller’s data

arg3
arg2

arg1

loc1
loc2

…

???
???

0xffffffff

0x00000000

Q) What are “???”?

First, we need $ebp

Stack layout when calling function

47

Caller’s data

arg3
arg2

arg1

loc1
loc2

…

???
???

0xffffffff

0x00000000

Q) What are “???” ?

First, we need $ebp

Second, we need a return address

Function Call Stack

48

void f(int a, int b)

{

int x;

}

void main()

{

f(1,2);

printf("hello world");

}

Order of the function arguments in

stack

49

Can you tell why are

+12, +8 and -8 listed

here?

Stack Layout for Function Call

Chain

50

main()

foo()

bar()

Heap

51

int x = 100;

int main() {

int a = 2;

float b = 2.5;

static int y;

int *ptr = (int *) malloc(2*sizeof(int));

ptr[0] = 5;

ptr[1] = 6;

free(ptr);

return 1;

}

// In Data segment

// In Stack

// In Stack

// In BSS

// Allocate memory on Heap

// values 5 and 6 stored on heap

// In Heap

// In Heap

Returning from functions

52

Caller’s data

arg3
arg2

arg1

loc1
loc2

…

return $eip

prev. $ebp

0xffffffff

0x00000000

$eb

p

$esp

Returning from functions

53

Caller’s data

arg3
arg2

arg1

loc1
loc2

…

0xffffffff

0x00000000

ebpesp

return $eip

prev. $ebp

Returning from functions

54

Caller’s data

arg3
arg2

arg1

loc1
loc2

…

0xffffffff

0x00000000

$eb

p

$esp
return $eip

prev. $ebp

Returning from functions

55

Caller’s data

arg3
arg2

arg1

loc1
loc2

…

0xffffffff

0x00000000

$eb

p

$esp
return $eip

prev. $ebp

Returning from functions

56

Caller’s data

arg3
arg2

arg1

loc1
loc2

…

0xffffffff

0x00000000

$ebp

$esp
return $eip

prev. $ebp

1. The next instruction is to “remove” the arguments off the stack

2. And now we’re back where we started

Stack & functions: Summary

Calling function (before calling):

1. Push arguments onto the stack (in

reverse)

2. Push the return address, i.e., the

address of the instruction you want run

after control returns to you: e.g., %eip + 2

3. Jump to the function’s address

57

Stack & functions: Summary

Calling function (before calling):

1. Push arguments onto the stack (in reverse)

2. Push the return address, i.e., the address of the
instruction you want run after control returns to you:
e.g., %eip + 2

3. Jump to the function’s address

Called function (when called):

1. Push the old frame pointer onto the stack: push
%ebp

2. Set frame pointer %ebp to where the end of the
stack is right now: %ebp=%esp

3. Push local variables onto the stack; access them as
offsets from %ebp

58

Stack & functions: Summary

Calling function (before calling):

1. Push arguments onto the stack (in reverse)

2. Push the return address, i.e., the address of the instruction you
want run after control returns to you: e.g., %eip + 2

3. Jump to the function’s address

Called function (when called):

1. Push the old frame pointer onto the stack: push %ebp

2. Set frame pointer %ebp to where the end of the stack is right
now: %ebp=%esp

3. Push local variables onto the stack; access them as offsets from
%ebp

Called function (when returning)

1. Reset the previous stack frame: %esp = $ebp; pop %ebp

2. Jump back to return address: pop %eip

59

