COSC 366
Intro to Computer Security

Lecture 04
Software Security

Dr. Suya
Fall 2024

Today’s Class

 Software security overview
* Refresher: function calls, memory layout

Overview

Why Software Security First

* Programs and their code are the basis of
computing

* Most people today use off the shelf programs

* Programs are written by humans

» Flaws occur regularly or sporadically despite
testing

TENNESSEE oy

What We Will Study

» Unintentional programming oversights
- benign program flaws are often exploited for
malicious impact
- when this happens, which of CIA is compromised?

- usually a stepping stone to something bigger

e Malicious programs - malware

Unintentional Programming
Oversights

 Buffer overflow
e Other programming oversights

e Countermeasures

TENNESSEE Y

The Most Infamous: Buffer Overflow

+ A buffer overflow is a bug that affects low-level
language, typically C and C++

% A program with bug will normally just crash
- In terms of CIA, what does it compromise?

<+ If under malicious attack, it can be exploited to
- steal private information
- corrupt valuable information
- inject and execute code of the attacker’s choice

What Is Buffer Overflow

< What is buffer

- contiguous memory associated with a variable or field

- e.g., when you type in something, it’s held in the buffer
before being processed

- common in C: null-terminated strings that are arrays of chars

<« What is buffer overflow

- read/write more than a buffer can hold

+ WVhere are the extra data go!
- we will find out

— BUFFER
_ OVERFLOW
b ATTACKS

THY UNIVERNITY OF

TENNESSEE g

KNOXVILLY

Why Do We Study It

+ It has a long history and gives a good lesson

+ It is still very relevant today
- C and C++ are still popular
- buffer overflows still occur regularly

Language Rank Types

Spectrum Ranking
Lea @0w SN
2 Jws BE
5. on D8 B
cemen @ o [
so @0w @I
spe @ ML
e @0 S
shey @ @B

|

me

Critical sttems in C/C++

+» Most OS kernels and utilities

- fingerd, X window server, shell
+ Many high-performance servers

- Microsoft IIS,Apache httpd, nginx

- Microsoft SQL server, MySQL, redis
+» Many embedded systems

- industrial control systems (e.g.,, SCADA), automobiles,
airplanes, smartphones

History of Buffer Overflows

+» 1988: Morris worm
- 10% of the Internet (6,000 machines) infected
+» 2001: CodeRed: exploited MS-IIS server
- 300,000 machines infected in 14 hours
% 2003:SQL Slammer: exploited MS-SQL server
- 75,000 machines infected in 10 minutes

+ 2014: Heartbleed

- 17% (half a million) secure web servers infected upon
disclosure

Refresher

<+ VWhat are function calls?
% How is program data laid out in memory
< VWVhat does call stack look like

+ What effect does calling (and returning from) a
function have on memory?

+ Ve will use x86 32-bit Linux processor model as
example

FUNCTION

What'’s function?

* Assigns to each element of X exactly
one element of Y

* A group of statements that together

perform a task. NPUT »

* Every C program has at least one)
function, which is main(), and all the | FuncTion':
most trivial programs can define)L

o o . QUTPUT fi(x)
additional functions.

Function

int x = 100;
int main{()

{

}

// data stored on stack
int a=2;

float b=2.5;

static int y;

// allocate memory on heap
int *ptr = (int *) malloc(2+sizeof (int));

// values 5 and 6 stored on heap
ptr(0]=5;
ptr(l]=6;

// deallocate memory on heap
free(ptr);

return 1;

Function name
> Main
Arguments

° none

Local variables
> Eg,ab
Return address
> Invisible
Return value

o |

THE UNIVERNMTY OF

TENNESSEE i §

KNUXVILLY

Function call/return

(foo(...) {

I.)'a.r();

T

MEMORY LAYOUT

All programs are stored in memory

4G Oxffffffff

0 0x00000000

All programs are stored in memory

4G Oxffffffff

The process’s view of
memory is that
it owns all of it

0 0x00000000

Can the 32-bit system have more than this memory space?

THE UNIVERNMTY OF

TENNESSEE g §

KNUXVILLY

Wait!

* How would it be possible for two programs
to run at the same time on your Windows
or MacOS?
> May conflict your program with other programs

° You have a limited memory like 4GB, your
program needs more memory space than 4GB.

> How can we overcome this challenge!?

Virtual Memory

* Freeing applications from having to
manage a shared memory space.

° You don’t worry about managing memory (at
low level) when programming =» Process
isolation, simplifying application writing,
simplifying compilation, linking, loading

* Able to conceptually use more memory
than might be physically available

Virtual Memory

Memory management unit

Vil Physical

addresses addresses
(VAs) ; -
Not all virtual — N-1
addresses may have
a translation e
Page Map

I¥ IVERNTY O

TENNESSEE g

All programs are stored in memory

4G Oxffffffff

AN

The process’s view of In reality, these are
memory is that virtual address; the

it owns all of it OS/CPU map them
to physical

/dd resses.

0 0x00000000

THE UNIVERNMTY O

TENNESSEE [0

The instructions are stored in

memory

4G

Text

~

l

Oxffffffff

(.)

movl %esp, sebp
movl

12 (%ebp) , 3eax
addl 8 (%sebp), $seax

& Y
0x00000000

THE UNIVERMITY €

TENNESSEE i b

KNUXVILLY

The instructions are stored in

memory

4G

Oxffffffff

Text

~

] 0x00000000

TENNESSEE Y

Data are stored in memory

4G

Oxffffffff

Data

D |
[const int x=10;

Text

]

] 0x00000000

Data are stored in memory

4G

Oxffffffff

Data

D |
[const int x=10;

Text

]

] 0x00000000

Data are stored in memory

4G

Known at
compile time

Oxffffffff

Data

D |
[const int x=10;

]

Text

] 0x00000000

TENNESSEE jpy

KNUXVILLY

Stack (Local variables)

4G J Oxffffffff
int £() {
Stack [int x;]
Data [const int x=10;]
Text
0] 0x00000000

TENNESSEE oy

Heap (Dynamic memory)

4G

Oxffffef
(int £() { A
Stack int x;
|)
Heap malloc (4)
1 .
Data const int x=10;
] g
Text

] 0x00000000

THY UNIVERMITY OF

TENNESSEE g §

KNOXVILLY

Heap (Dynamic memory)

4G

Oxffffef
(int £() { A
Stack int x;
|)
Heap malloc (4)
1 .
Data const int x=10;
] _
Text

] 0x00000000

THY UNIVERMITY OF

TENNESSEE g §

KNOXVILLY

Stack & Heap grow in opposite

directions

4G

Stack

ek

1

Oxffffffff

(int £() {
int x;

\---

malloc (4)

Heap
] .

Data const int x=10;
] \

Text

l

0x00000000

Program Memory Stack

int x = 100;
int main()
{
// data stored on stack
int a=2;
float b=2.5;
static int y;

// allocate memory on heap

int «ptr = (int) malloc(2+sizeof (int));

// values 5 and 6 stored on heap
ptr([0]=5;
ptr([l]=6;

// deallocate memory on heap
free (ptr);

return 1;

(High address)

Stack
a,b, ptr —>
N

ptr points to
the memory l Heap
here

y — P BSS segment

X — P Data segment

(Low address)

Text segment

THYE UNIVERNMTY OF

TENNESSEE g §

KNUXVILLY

STACK LAYOUT

Stack layout when calling function

Oxffffffff []

void func(char *argl, int arg2, int arg3) ’
(‘ Caller’s data \

char locl[4] arg3
int loc2; r 1
g ’ Arguments pushed)
int loc3; in reverse order of code '_arg__
e arg |

0x00000000

THYE UNIVERNMTY OF

TENNESSEE g §

KNOXVILLY

Stack layout when calling function

Oxffffffff | |
void func(char *argl, int arg2, int arg3) ’
(Caller’s data
char locl[4]
int loc2; arg3 |

Arguments pushed

in reverse order of code ‘_argZ__
} - " arg I

int loc3;

Local variables pushed loc|
in the same order loc2
as they appear in the code

0x00000000

THEY UNIVERMTY OF

TENNESSEE B &

KNUXVILLY

Stack layout when calling function

Oxffffffff | |
void func(char *argl, int arg2, int arg3) ’
(Caller’s data
char locl[4]
int loc2; arg3 |

Arguments pushed

in reverse order of code ‘_argZ__

int loc3;

arg|
} 3
7
77
Local variables pushed loc|
in the same order loc2
as they appear in the code
0x00000000

THYE UNIVERNITY OF

TENNESSEE B &

KNUXVILLY

Stack layout when calling function

Oxffffffff |
void func(char *argl, int arg2, int arg3)

|
{

‘ Caller’s data \
char locl[4]

int loc2;

arg3
b 4
_ Arguments pushed)
int loc3; in reverse order of code '_arg__
}

arg |

Two values between the args
and the local variables

Local variables pushed b loc|
in the same order loc2
as they appear in the code

0x00000000

THY UNIVERNITY OF

TENNESSEE g

KNOXVILLY

EBP (EXTENDED BASE
POINTER)

What’s the addr. of loc2!?

Ox{ffff [I
void func(char *argl, int arg2, int arg3) ’
(‘ Caller’s data \
char locl[4]
int loc2; ¢ arg3]
int loc3; arg2
} arg |
N
' 2! N
Q) Where is loc2!
What's the specific address? | locl
ey | loc?2
0x00000000

THYE UNIVERNITY OF

TENNESSEE B &

KNUXVILLY

What’s the addr. of loc2!?

Oxffffffff []
\{roid func(char *argl, int arg2, int arg3) [Callor’s data]
Tt loc2s | | arg3 |
int loc3; arg?
[—g—argl
1
Q) Where is loc2? 1
What's the specific address? | locl
A) We don’t know before running —) | loc2
since undecidable at compile time 0x00000000

THY UNIVERNITY OF

TENNESSEE g

KNOXVILLY

What’s the addr. of loc2!?

Oxffff [|
void func(char *argl, int arg2, int arg3) ,
{ ‘ Caller’s data \
char locl[4] 3
int loc2; ¢ arg 4
int 1loc3; arg?2
— —g—argl
m 4B
Q) Where is loc2!? n 4B
What’s the specific address!? | locl
A) But we can know loc2 is always |_loc2
8bytes before “22?’s 0x00000000

THY UNIVERNITY OF

TENNESSEE i §

KNOXVILLY

EBP (Base Pointer)

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3;

Q) Where is loc2!?

What'’s the specific address!?

A) But we can know loc2 is always
8bytes before “22?’s

Oxffffffff

Sebp)

0x00000000

‘ Caller’s data \

| 4

arg3

arg2

|

arg |

172

77

locl

loc2

THY UNIVERNITY OF

TENNESSEE g

KNOXVILLY

EBP (Base Pointer): Notation

e %ebp: A memory address

* (%ebp): The value at memory address
%ebp (like dereferencing a pointer)

EBP (Base Pointer)

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3;

Q) where is loc2? Sebp
What'’s the specific address (and content)?

A) -8 (%ebp)

Oxffffffff

=

0x00000000

‘ Caller’s data \

| 4

arg3

arg2

arg |

|

172

77

locl

loc2

THY UNIVERMITY OF

TENNESSEE i §

KNOXVILLY

Stack layout when calling function

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3;

Q) What are “22?

First, we need $ebp

Oxffffffff

0x00000000

‘ Caller’s data \

arg3

b

arg2

|

arg |

"

44

locl

loc2

THY UNIVERNITY OF

TENNESSEE g

KNOXVILLY

Stack layout when calling function

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;
int loc3;

Q) What are “2?” ?

First, we need $ebp
Second, we need a return address

Oxffffffff

0x00000000

‘ Caller’s data \

arg3

b

arg2

|

arg |

"

44

locl

loc2

THY UNIVERNITY OF

TENNESSEE g

KNOXVILLY

Function Call Stack

void f(int a, int b) Stack
(grows _
(High address)
int x; . "
) main()
void main () stack
(frame [‘
£(1,2); Value of b: 2
printf ("hello world"); ¢ Value of a: 1
} 0 Return Add Points to printf()
stack = eturn ress ——— In main()
frame Previous Frame Pointer
v -
(Low address)

Order of the function arguments in
stack

void func (int a, int b)

L . Can you tell why are

int %, Vi i
S +12, +8 and -8 listed

X = a + b; here?
y = a — b;

}

movl 12 (%ebp), %eax ; b is stored in %ebp + 12

mov 1l 8 (5ebp), %edx ; a is stored in %ebp + 8

addl $edx, %eax

movl1l seax, —8(%ebp) ; X 1s stored in %ebp - 8

THYE UNIVERNMTY OF

TENNESSEE g §

KNUXVILLY

Stack Layout for Function Call
Chain

Stack (High address)

grows
T main()
main() — P
foo() - main()’s Frame Pointer |z foo()
. Current
bar() — foo()’s Frame Pointer Fsis
v : bar()
. Pointer

(Low address)

Heap

int x = 100; // In Data segment
int main() {
inta = 2; // In Stack
float b = 2.5;// In Stack
static int y;// In BSS

/[Allocate memory on Heap
int *ptr = (int *) malloc(2*sizeof(int));
/[values 5 and 6 stored on heap
ptr[0] = 5;// In Heap
ptr[1] = 65/ In Heap
free(ptr);
return |;

}

TENNESSEE

Returning from functions

Oxffffffff []

‘ Caller’s data \

InC In compiled assembly P arg3 |
arg2
leave:»mov $esp %ebp |
return; pop %ebp arg
ret: pop %eip return $e|p
scr mmmmp [Prev. $ebp
p————
p | loc |
Sesp) | loc2
0x00000000 —

THYE UNIVERNITY OF

TENNESSEE B &

KNUXVILLY

Returning from functions

Oxffffffff []

‘ Caller’s data \

InC In compiled assembly P arg3 |

arg2

leave:»mov $esp %ebp |

return; pop %ebp arg
ret: pop %eip return $e|p
rev. $eb

$esp ‘ $ebp ‘ .P—$P¢

loc|
r |

loc?2

0x00000000

THYE UNIVERNITY OF

TENNESSEE B &

KNUXVILLY

Returning from functions

Oxffffffff []

In C In compiled assembly ‘ Caller’s data \

leave: mov %esp %ebp arg3
return; =) pop %ebp [argz |
ret: pop %eip arg |

| 4) |
sesp : return $eip
scp mmmmp |PreV: $ebp

P | locl
loc2

0x00000000

THYE UNIVERNITY OF

TENNESSEE B &

KNUXVILLY

Returning from functions

Oxffffffff []

In C In compiled assembly $eb “ Caller’s data \
)

leave: mov %esp %ebp arg3
return; =) pop %ebp [argz |
ret: pop %eip arg |

| 4) |
return $eip
$ ‘
o prev. $ebp
p————

locl
loc2

0x00000000

THYE UNIVERNITY OF

TENNESSEE B &

KNUXVILLY

Returning from functions

Oxffffffff I I
$ebp “ Caller’s data \

In C In compiled assembly arg3
b 4

leave: mov %esp %ebp argz

return; $eb
POp. S€5P argl
ret: =Ppop %$eip $esp "

return $eip
prev. $ebp

locl

loc?2

I. The next instruction is to “remove” the arguments off the stack
2. And now we're back where we started

0x00000000

THYE UNIVERNITY OF

TENNESSEE B &

KNUXVILLY

Stack & functions: Summary

Calling function (before calling):

I. Push arguments onto the stack (in
reverse)

2. Push the return address, i.e., the
address of the instruction you want run
after control returns to you: e.g., %eip + 2

3. Jump to the function’s address

ESSE

Stack & functions: Summary

Calling function (before calling):
I. Push arguments onto the stack (in reverse)

2. Push the return address, i.e., the address of the
instruction you want run after control returns to you:
e.g., %eip + 2

3. Jump to the function’s address

Called function (when called):

I. Push the old frame pointer onto the stack: push
Joebp

2. Set frame pointer %ebp to where the end of the
stack is right now: %ebp=7%esp

3. Push local variables onto the stack; access them as
offsets from %ebp

Stack & functions: Summary

Calling function (before calling):
I. Push arguments onto the stack (in reverse)

2. Push the return address, i.e., the address of the instruction you
want run after control returns to you: e.g., %eip + 2

3. Jump to the function’s address
Called function (when called):
I. Push the old frame pointer onto the stack: push %ebp

2. Set frame pointer %ebp to where the end of the stack is right
now: %ebp=%esp

3. Push local variables onto the stack; access them as offsets from
J%ebp

Called function (when returning)
I. Reset the previous stack frame: %esp = $ebp; pop %ebp
2. Jump back to return address: pop %eip

ESSE

