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Today’s Class

 Software security overview

 Refresher: function calls, memory layout



Overview
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Why Software Security First

 Programs and their code are the basis of 

computing

 Most people today use off the shelf programs

 Programs are written by humans

 Flaws occur regularly or sporadically despite 

testing



What We Will Study

 Unintentional programming oversights

- benign program flaws are often exploited for 

malicious impact

- when this happens, which of CIA is compromised?

- usually a stepping stone to something bigger

 Malicious programs - malware



Unintentional Programming 

Oversights
 Buffer overflow

 Other programming oversights

 Countermeasures



The Most Infamous: Buffer Overflow

 A buffer overflow is a bug that affects low-level 
language, typically C and C++

 A program with bug will normally just crash

- In terms of CIA, what does it compromise?

 If under malicious attack, it can be exploited to
- steal private information

- corrupt valuable information

- inject and execute code of the attacker’s choice



What Is Buffer Overflow

 What is buffer

- contiguous memory associated with a variable or field

- e.g., when you type in something, it’s held in the buffer 
before being processed

- common in C: null-terminated strings that are arrays of chars

 What is buffer overflow

- read/write more than a buffer can hold

 Where are the extra data go? 
- we will find out



Why Do We Study It
 It has a long history and gives a good lesson

 It is still very relevant today
- C and C++ are still popular

- buffer overflows still occur regularly



Critical Systems in C/C++

 Most OS kernels and utilities
- fingerd, X window server, shell

 Many high-performance servers
- Microsoft IIS, Apache httpd, nginx

- Microsoft SQL server, MySQL, redis

 Many embedded systems
- industrial control systems (e.g., SCADA), automobiles, 
airplanes, smartphones



History of Buffer Overflows

 1988: Morris worm

- 10% of the Internet (6,000 machines) infected

 2001: CodeRed: exploited MS-IIS server

- 300,000 machines infected in 14 hours

 2003: SQL Slammer: exploited MS-SQL server

- 75,000 machines infected in 10 minutes

 2014: Heartbleed

- 17% (half a million) secure web servers infected upon 
disclosure 



Refresher

 What are function calls?

 How is program data laid out in memory

 What does call stack look like

 What effect does calling (and returning from) a 
function have on memory?

 We will use x86 32-bit Linux processor model as 
example



FUNCTION
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What’s function?

 Assigns to each element of X exactly 

one element of Y

 A group of statements that together 

perform a task.

 Every C program has at least one 

function, which is main(), and all the 

most trivial programs can define 

additional functions.



Function

 Function name

◦ Main

 Arguments

◦ none

 Local variables

◦ E.g., a, b 

 Return address

◦ Invisible

 Return value

◦ 1
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Function call/return
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foo(...) {

…

bar();

…

}

bar(...) {

…

…

}

main(...) {

…

foo(…);

…

}

main:

jmp foo

foo:

bar:

jmp back

1

2

4 5

3

6

7



MEMORY LAYOUT
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All programs are stored in memory

18

4G

0

0xffffffff

0x00000000



All programs are stored in memory
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4G

0

0xffffffff

0x00000000

The process’s view of 

memory is that 

it owns all of it

Can the 32-bit system have more than this memory space?



Wait! 

 How would it be possible for two programs 

to run at the same time on your Windows 

or MacOS?

◦ May conflict your program with other programs

◦ You have a limited memory like 4GB, your 

program needs more memory space than 4GB.

◦ How can we overcome this challenge?



Virtual Memory

 Freeing applications from having to 

manage a shared memory space. 

◦ You don’t worry about managing memory (at 

low level) when programming  Process 

isolation, simplifying application writing,

simplifying compilation, linking, loading

 Able to conceptually use more memory 

than might be physically available



Virtual Memory 



All programs are stored in memory

23

4G

0

0xffffffff

0x00000000

The process’s view of 

memory is that 

it owns all of it

In reality, these are 

virtual address; the 

OS/CPU map them 

to physical 

addresses.



The instructions are stored in 

memory
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4G

0

0xffffffff

0x00000000

Text

…

movl %esp,%ebp

movl

12(%ebp),%eax

addl 8(%ebp),%eax

…



The instructions are stored in 

memory
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4G

0

0xffffffff

0x00000000

Text



Data are stored in memory
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4G

0

0xffffffff

0x00000000

Text

Data const int x=10;



Data are stored in memory
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4G

0

0xffffffff

0x00000000

Text

Data const int x=10;



Data are stored in memory
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4G

0

0xffffffff

0x00000000

Text

Data
Known at 

compile time

const int x=10;



Stack (Local variables)
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4G

0

0xffffffff

0x00000000

Text

Data
Known at 

compile time

Stack

const int x=10;

int f() { 

int x; 

…



Heap (Dynamic memory)
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4G

0

0xffffffff

0x00000000

Text

DataKnown at 

compile time

Stack

const int x=10;

int f() { 

int x; 

…

Heap malloc(4)



Heap (Dynamic memory)
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4G

0

0xffffffff

0x00000000

Text

DataKnown at 

compile time

Stack

const int x=10;

int f() { 

int x; 

…

Heap malloc(4)

Dynamically sized 

at runtime



Stack & Heap grow in opposite 

directions
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4G

0

0xffffffff

0x00000000

Text

DataKnown at 

compile time

Stack

const int x=10;

int f() { 

int x; 

…

Heap malloc(4)

Dynamically sized 

at runtime



Program Memory Stack
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ptr points to 

the memory 

here

a,b, ptr

y

x



STACK LAYOUT
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Stack layout when calling function
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Caller’s data

arg3
arg2

arg1

Arguments pushed 

in reverse order of code

0xffffffff

0x00000000



Stack layout when calling function
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Caller’s data

arg3
arg2

arg1

Arguments pushed 

in reverse order of code

loc1
loc2

…

Local variables pushed 

in the same order 

as they appear in the code

0xffffffff

0x00000000



Stack layout when calling function
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Caller’s data

arg3
arg2

arg1

Arguments pushed 

in reverse order of code

loc1
loc2

…

Local variables pushed 

in the same order 

as they appear in the code

???
???

0xffffffff

0x00000000



Stack layout when calling function
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Caller’s data

arg3
arg2

arg1

Arguments pushed 

in reverse order of code

loc1
loc2

…

Local variables pushed 

in the same order 

as they appear in the code

???

???

Two values between the args

and the local variables

0xffffffff

0x00000000



EBP (EXTENDED BASE 
POINTER)
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What’s the addr. of loc2?

40

Caller’s data

arg3
arg2

arg1

loc1
loc2

…

???
???Q) Where is loc2? 

What’s the specific address?

0xffffffff

0x00000000



What’s the addr. of loc2?
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Caller’s data

arg3
arg2

arg1

loc1
loc2

…

???
???Q) Where is loc2? 

What’s the specific address?

A) We don’t know before running 

since undecidable at compile time

0xffffffff

0x00000000



What’s the addr. of loc2?
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Caller’s data

arg3
arg2

arg1

loc1
loc2

…

???
???Q) Where is loc2? 

What’s the specific address?

A) But we can know loc2 is always

8bytes before “???”s  addr of ??? - 8B

0xffffffff

0x00000000

4B

4B

4B
4B



EBP (Base Pointer)
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Caller’s data

arg3
arg2

arg1

loc1
loc2

…

???
???Q) Where is loc2? 

What’s the specific address?

A) But we can know loc2 is always

8bytes before “???”s  addr of ??? - 8B

0xffffffff

0x00000000

$ebp



EBP (Base Pointer): Notation

 %ebp: A memory address

 (%ebp): The value at memory address 

%ebp (like dereferencing a pointer)
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EBP (Base Pointer)
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Caller’s data

arg3
arg2

arg1

loc1
loc2

…

???
???Q) where is loc2? 

What’s the specific address (and content)?

A) -8 (%ebp)

0xffffffff

0x00000000

$ebp



Stack layout when calling function
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Caller’s data

arg3
arg2

arg1

loc1
loc2

…

???
???

0xffffffff

0x00000000

Q) What are “???”?

First, we need $ebp



Stack layout when calling function
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Caller’s data

arg3
arg2

arg1

loc1
loc2

…

???
???

0xffffffff

0x00000000

Q) What are “???” ?

First, we need $ebp

Second, we need a return address



Function Call Stack
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void f(int a, int b)

{

int x;

}

void main()

{

f(1,2);

printf("hello world");

}



Order of the function arguments in 

stack
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Can you tell why are 

+12, +8 and -8 listed 

here?



Stack Layout for Function Call 

Chain
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main()

foo()

bar()



Heap
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int x = 100;

int main() {

int a = 2;

float b = 2.5;

static int y;

int *ptr = (int *) malloc(2*sizeof(int));

ptr[0] = 5;

ptr[1] = 6;

free(ptr);

return 1;

}

// In Data segment

// In Stack

// In Stack

// In BSS

// Allocate memory on Heap

// values 5 and 6 stored on heap

// In Heap

// In Heap



Returning from functions
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Caller’s data

arg3
arg2

arg1

loc1
loc2

…

return $eip

prev. $ebp

0xffffffff

0x00000000

$eb

p

$esp



Returning from functions
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Caller’s data

arg3
arg2

arg1

loc1
loc2

…

0xffffffff

0x00000000

$ebp$esp

return $eip

prev. $ebp



Returning from functions
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Caller’s data

arg3
arg2

arg1

loc1
loc2

…

0xffffffff

0x00000000

$eb

p

$esp
return $eip

prev. $ebp



Returning from functions
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Caller’s data

arg3
arg2

arg1

loc1
loc2

…

0xffffffff

0x00000000

$eb

p

$esp
return $eip

prev. $ebp



Returning from functions
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Caller’s data

arg3
arg2

arg1

loc1
loc2

…

0xffffffff

0x00000000

$ebp

$esp
return $eip

prev. $ebp

1. The next instruction is to “remove” the arguments off the stack

2. And now we’re back where we started



Stack & functions: Summary

Calling function (before calling):

1. Push arguments onto the stack (in 

reverse) 

2. Push the return address, i.e., the 

address of the instruction you want run 

after control returns to you: e.g., %eip + 2

3. Jump to the function’s address

57



Stack & functions: Summary

Calling function (before calling):

1. Push arguments onto the stack (in reverse) 

2. Push the return address, i.e., the address of the 
instruction you want run after control returns to you: 
e.g., %eip + 2

3. Jump to the function’s address

Called function (when called):

1. Push the old frame pointer onto the stack: push 
%ebp

2. Set frame pointer %ebp to where the end of the 
stack is right now: %ebp=%esp

3. Push local variables onto the stack; access them as 
offsets from %ebp
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Stack & functions: Summary

Calling function (before calling):

1. Push arguments onto the stack (in reverse) 

2. Push the return address, i.e., the address of the instruction you 
want run after control returns to you: e.g., %eip + 2

3. Jump to the function’s address

Called function (when called):

1. Push the old frame pointer onto the stack: push %ebp

2. Set frame pointer %ebp to where the end of the stack is right 
now: %ebp=%esp

3. Push local variables onto the stack; access them as offsets from 
%ebp

Called function (when returning)

1. Reset the previous stack frame: %esp = $ebp; pop %ebp

2. Jump back to return address: pop %eip
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