
Programming Languages

Stephen Marz

COSC365

Topics

• Classification

• Very Abridged History

• Covered Languages

Classification

• Declarative
• Functional: Lisp/Scheme, Ocaml, Haskell, Elixir, Erlang

• Dataflow: Id, Val

• Logic, Constraint: Prolog, Excel, SQL

• Imperative
• von Neumann: C, Ada, Fortran

• Object-oriented: Smalltalk, Eiffel, Java, C#, C++

• Scripting: PERL, PHP, Python, Javascript

Functional Languages

• Functional languages use a computational model of recursive
definition of functions.

• Inspired by lambda calculus.

• That is, functions act like mathematical functions.
• They take in data and produce an output.

• Tends to lead to much simpler, but many more functions.

Imperative Languages

• Stored-program architecture.

• Changing a mutating state.
• i = i + 1

• Imperative languages tell the machine how to run.
• Declarative languages tell the machine what to run.

"Computing"

• A computer just solves a
problem.

• Can be
• Mechanical

• Electrical

• Physical

• Abstract

Our Concept of Computing

• Started in the early 1940s

• Required "operators" to physically
plug wires.

• Programmers had to know the
architecture and machine.

• The "program" was all based on
the machine.

Electronic Numerical Integrator
and Computer (ENIAC), 1945

Stored Program Concept

• "von Neumann" Architectures

• Programs are "data" in memory that can change other data.

• Earliest programs were lookup tables.
• If you want to add a and b: here's the binary.

Boolean Logic

• Vacuum tubes and transistors allowed "Boolean logic" to function.

• With these simple switches:
• AND, OR, XOR, NOT

Assembly

• Assembly was the first abstraction of writing machine code.

• It was human-readable (arguably)
• It was strictly imperative.

• You told the computer how to calculate something.

"Coding"

• The concept of coding came from the "autocode" language in 1952 for the Mark I
computer.

• This was the first abstraction from telling the machine exactly what to do.

• Required a compiler to translate the language into assembly/machine code.

Procedural Concept

• 1960s concept to program by call subroutines which were responsible
for executing sections in memory.

• These subroutines could now be "called" and introduced "control
transfer".

FORTRAN

• Made for IBM in 1957.

• Had high-level language concepts.
• Functions (subroutines)

• Pass-by-value/pass-by-reference

• Complex number types

• High level language.
• Spawned about 51 compilers in use by 1965

List Processing (LISP)

• Created in 1960 in MIT

• High-level, functional programming language
• Still used today.

• Composed of "symbolic expressions" (S-expressions)

(define (factorial x)
(if (= x 0)

1
(* x (factorial (- x 1)))))

BASIC

• Written to be simple.

• Home computers would boot to a
BASIC program editor.

05 HOME : TEXT : REM Fibonacci

numbers

10 LET MAX = 5000

20 LET X = 1 : LET Y = 1

30 IF (X > MAX) GOTO 100

40 PRINT X

50 X = X + Y

60 IF (Y > MAX) GOTO 100

70 PRINT Y

80 Y = X + Y

90 GOTO 30

100 END

Languages

• C#

• Haskell

• Rust

• Python – we will only use this for extending Python using C++ to look at foreign
function interface (FFI).

C# (.cs) [created in 2000]

• Attributes
o compiled
o object-oriented
o virtual machine (.NET)
o procedural (imperative)

• Emphasizes rapid and large-scale development

• C# is fully portable now
o MSFT supports Mac and Linux via "dotnet"
o Third-party Mono

Haskell (.hs) [created in 1989]

• Attributes
opurely functional

o compiled

• Emphasizes reliability and bug reduction at time of writing code

OCaml (.ml) [created in 1996]

• Attributes
o interpreted (has a compiled-into-bytecode option)

odeclarative

• Emphasizes reliability

Elixir (.ex/.exs) [created in 2012]

• Attributes
o compiled (.ex) or interpreted as a script (.exs)

odeclarative/functional

• Emphasizes distributed applications and fault-tolerance.

• Runs on the Erlang VM

Rust (.rs) [created in 2010]

• Attributes
• compiled (has an interpreted option)
oblended: imperative and/or functional

• Systems language

• Emphasizes safety
• Ensures your memory is valid when it is accessed

• Has an unsafe mode, where YOU enforce safety/compliance.

Topics

• Classification

• Very Abridged History

• Covered Languages

Programming Languages

Stephen Marz

COSC365

