
Chapter 20: Smaller Page Tables
Adam Disney



Crux: How To Make Page Tables Smaller?



Simple Solution: Bigger Pages

• Larger pages requires less pages to represent the entire address 
space.
— 32-bit AS split into 20-bit VPN + 12-bit offset w/ 4 byte page table entries

• 2^20 * 4 bytes = 4MB

— 32-bit AS split into 18-bit VPN + 14-bit offset w/ 4 byte page table entries
• 2^18 * 4 bytes = 1MB

• But this increases internal fragmentation



Hybrid Approach: 
Paging and Segments



Hybrid Approach: Paging and Segments

• How about we have a page table per logical segment?

• Now our base and bound registers are for the page tables themselves

• This allows our page tables to only be as large as they need to be

• Issues:
— Inflexible, assuming memory usage.

— External fragmentation due to variable size page tables



Multi-level Page Tables

• Chop up the page table 
into page-sized units
— If an entire page of PTEs is 

invalid, don't allocate that 
page of the page table

• We use a page directory 
to track which page table 
pages are valid



Multi-level Page Tables 
(Advantages/Disadvantages)

• Advantages
— Supports sparse address spaces in a compact page table

— If carefully constructed, each portion of the page table fits neatly within a page 
for easy memory management
• Linear page table must be contiguous in memory. This does not.

• Disadvantages
— Now requires multiple loads from memory on address translation

• Time-space trade-offs

— More complex



Multi-level Page Tables Example

• Address space size is 16KB w/ 64-byte 
pages
— 14-bit virtual address space

— 8-bit VPN + 6-bit offset

• Linear page table must have 2^8 entries

• Assume PTE is 4 bytes that means 
linear page table would be 1KB



Multi-level Page Tables Example

• With 64-byte pages, we can divide the 1KB table into 16 64-byte Page 
Table Pages

• Thus, the page directory needs 16 entries

• Now we look up the page in the page directory
— If it's valid, look up the entry in that page of the page table



Multi-level Page Tables Example

• Notice we only need 3 pages 
instead of 16 in this example
— Obviously, 32-bit/64-bit AS would 

save much more space

• Let's translate an address!



More Than Two Levels

• Generally, we want all parts of the page table to fit in pages

• Thus, if the page directory gets too large, we might need more levels



More Than Two Levels

• Questions!



Inverted Page Tables

• Instead of having many page tables (1 per process), have a single 
page table representing the physical pages

• Now to know if a page is present in memory, we must scan the table

• Usually paired with a hash table to speed up lookups

• Again, page table is just a data structure which we could represent in 
many different ways.



Swapping the Page Tables to Disk

• Thus far, we have assumed page tables reside in physical memory

• Some systems place page tables in kernel virtual memory to allow 
them to swap pages of the page tables to disk

• More on that next time!


	Cover/Divider
	Slide 1: Chapter 20: Smaller Page Tables

	Content Layouts
	Slide 2: Crux: How To Make Page Tables Smaller?
	Slide 3: Simple Solution: Bigger Pages
	Slide 4: Hybrid Approach: Paging and Segments
	Slide 5: Hybrid Approach: Paging and Segments
	Slide 6: Multi-level Page Tables
	Slide 7: Multi-level Page Tables (Advantages/Disadvantages)
	Slide 8: Multi-level Page Tables Example
	Slide 9: Multi-level Page Tables Example
	Slide 10: Multi-level Page Tables Example
	Slide 11: More Than Two Levels
	Slide 12: More Than Two Levels
	Slide 13: Inverted Page Tables
	Slide 14: Swapping the Page Tables to Disk


