Chapter 19: Translation Lookaside Buffer

Adam Disney

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Crux: How To Speed Up Address Translation

THE CRUX:
How TO SPEED UP ADDRESS TRANSLATION
How can we speed up address translation, and generally avoid the
extra memory reference that paging seems to require? What hardware
support is required? What OS involvement is needed?

Overview

- Let's add a hardware cache specifically for the page tables called a
Translation Lookaside Buffer (TLB).

« Sidenote:

— Caching is a fundamental performance technique used throughout
computer systems to make "the common case" fast.

— Take advantage of locality (temporal and spatial)

Overview

E= - - B = A N . T

e o T e Y
=R O D - T D U R o B =

VPN = (VirtualAddress & VPN_MASK) >> SHIFT

(Success, TlbEntry) = TLB_Lookup (VPN)
if (Success == True) // TLB Hit
if (CanAccess (TlbEntry.ProtectBits) == True)
Offset = VirtualAddress & OFFSET_MASK
PhysAddr = (TlbEntry.PFN << SHIFT) | Offset
Register = AccessMemory (PhysAddr)
else
RaiseException (PROTECTION_FAULT)
else // TLB Miss

PTEAddr = PTBR + (VPN * sizeof (PTE))
PTE = AccessMemory (PTEAddr)

if (PTE.Valid == False)
RaiseException (SEGMENTATION_FAULT)

else if (CanAccess (PTE.ProtectBits) == False)
RaiseException (PROTECTION_FAULT)

else
TLB_Insert (VPN, PTE.PFN, PTE.ProtectBits)
RetryInstruction ()

Figure 19.1: TLB Control Flow Algorithm

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Example: Accessing An Array

» Assumptions
— Array "a" is at virtual address 100
— 8-bit virtual address space
— 16 byte pages thus 4-bit VPN and 4-bit offset

— Only "a" generates memory accesses (for simplicity)

int sum = 0;
for (i = 0; 1 < 10; i++) {

Offset

Example: 00 04 08 12 16

VPN = 00
Accessing An Array Nt
VPN = 03
VPN = 04
VPN = 05 -
VPN = 06 L a0] |} a[1] | al2]
VPN = 07 | a[3] | a[4] | a[5] | a[6]
VPN =08 | a[7] | a[8] | a[9]
VPN = 09
VPN = 10
VPN = 11
VPN = 12
VPN =13
VPN = 14
VPN = 15

Figure 19.2: Example: An Array In A Tiny Address Space

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Offset

" 00 04 08 12 16
Example: N
Accessing An Array von - o

| VPN = 03
* TLB hit rate = 70% VPN = 04
_ VPN = 05 -
» Sidenote: VPN = 06 L a[0] ; a[1] ; a[2]
— Caching is a fundamental VPN =07 | a3l | altl i alol; ale]
. VPN = 08 317]] a[8]] -ﬂ[g] :
performance technique used VPN = 09
throughout computer systems to VPN = 10
make "the common case" fast. VPN = 11
— Take advantage of locality VPN =12
(temporal and spatial) Em f :i
VPN = 15

Figure 19.2: Example: An Array In A Tiny Address Space

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Who Handles The TLB Miss?

* Is it the OS or hardware?

- Hardware Approach
— Hardware must know exactly where the page tables are located.
— On a miss, hardware walks the page table to update the TLB.

* OS Approach

— On a miss, hardware raises privilege level to kernel mode and jumps to a trap
handler that will update the TLB through privileged instructions.

— Must ensure not to generate an infinite loop of TLB misses.
— More flexible and hardware is simple

TENNESSEE @ §

KNOXVILLE

Who Handles The TLB Miss?

1 VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2 (Success, TlbEntry) = TLB_Lookup (VPN)

3 1if (Success == True) // TLB Hit

4 if (CanAccess (TlbEntry.ProtectBits) == True)

5 Offset = VirtualAddress & OFFSET_MASK

6 PhysAddr = (TlbEntry.PFN << SHIFT) | Offset
7 Register = AccessMemory (PhysAddr)

8 else

9 RaiseException (PROTECTION_FAULT)

0 else // TLB Miss

ok
[y

RaiseException (TLB_MISS)

Figure 19.3: TLB Control Flow Algorithm (OS Handled)

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

TLB Contents: What's In There?

- Typically, a TLB might have 32, 64, or 128 entries and be fully
associative.

» TLB entry might look like this:
— VPN | PEN | other bits
— Must have VPN because it could be anywhere in the cache.
— Other bits are valid, protection, dirty bit, etc.

TLB Issue: Context Switches

- TLB contents is only valid for the current running process. On a
context switch, it becomes invalid. We must be careful.

* For example, if we have process P1 running.
— P1 might have a mapping of VPN 10 -> PFN 100

* Now P1 is context switched out for P2.

— P2 might have a mapping of VPN 10 -> PFN 170 VvPN | PFN | valid Pmt
10 100 1 rwx
_ — 0 —
10 170 1 WX
_ — 0 —

TENNESSEE @ §

KNOXVILLE

TLB Issue: Context Switches

« How do we solve this issue?

* Obvious simple approach...flush the TLB on context switch.
— Software approach, perhaps an instruction to flush the TLB.
— Hardware approach, perhaps flush when the page-table base register changes.

* This works but if we context switch often, we may have a high TLB miss rate.

— Some systems add hardware support to share the TLB with an address space identifier.
— Hardware must also know which process is running.

VPN | PEN | valid | prot | ASID

10 100 WX

10 170

1
TWX 2

OO

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

TLB Issue: Context Switches

* In the case of sharing pages, maybe our TLB looks like this.

VPN | PEN | valid | prot | ASID
10 101 1 r-X 1
_ _ 0 _ _
a0 101 1 r-X 2

0 _

Issue: Replacement Policy

* Must consider how we do cache replacement when the cache is full.

* Look at this in more detail in the swapping pages chapters but we
might use:

— Least Recently Used (LRU)
— Random: Works better in some edge cases like looping over n + 1 pages

A Real TLB Entry (MIPS R4000)

- 32-bit address space with 4KB pages.
— 20-bit VPN and 12-bit offset

— TLB is only 19-bit VPN because user addresses are limited to half the address
space. Kernel reserves the other half.

— VPN translates to up to 24-bit PFNs for a max of 64GB of RAM
* Global bit (G) to ignore ASID

* 8-bit ASID (What if running more than 256 processes?)
0O000O0O0O0O0O0O01T1T1T1T111111222222222233
012345678901 2345678901234567890.1

VPN G ! ASID
[PFN | c [b]v]

Figure 19.4: A MIPS TLB Entry

A Real TLB Entry (MIPS R4000)

* MIPS TLB usually have 32 or 64 entries with a few reserved for the
OS.

* A "wired" register can be set by the OS to reserve slots in the TLB.

 MIPS TLB is software managed thus the OS uses specific instructions
to manipulate the cache.

WOr
o

b
ﬂm"-ll"ﬂ

| PFN |

E
<

Figure 19.4: A MIPS TLB Entry

	Cover/Divider
	Slide 1: Chapter 19: Translation Lookaside Buffer

	Content Layouts
	Slide 2: Crux: How To Speed Up Address Translation
	Slide 3: Overview
	Slide 4: Overview
	Slide 5: Example: Accessing An Array
	Slide 6: Example: Accessing An Array
	Slide 7: Example: Accessing An Array
	Slide 8: Who Handles The TLB Miss?
	Slide 9: Who Handles The TLB Miss?
	Slide 10: TLB Contents: What's In There?
	Slide 11: TLB Issue: Context Switches
	Slide 12: TLB Issue: Context Switches
	Slide 13: TLB Issue: Context Switches
	Slide 14: Issue: Replacement Policy
	Slide 15: A Real TLB Entry (MIPS R4000)
	Slide 16: A Real TLB Entry (MIPS R4000)

