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Crux: How To Virtualize Memory With Pages

THE CRUX:
How TO VIRTUALIZE MEMORY WITH PAGES
How can we virtualize memory with pages, so as to avoid the prob-
lems of segmentation? What are the basic techniques? How do we make
those techniques work well, with minimal space and time overheads?




Overview

* Instead of variable-sized segments, let's have fixed-sized pages.
* We divide the virtual address space into fixed-sized pages.
* We divide the physical address space into fixed-sized page frames.

 This approach is simple for free-space management because of fixed-
sized units.

— No assumptions about how the program will use address space.
— No external fragmentation
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Figure 18.1: A Simple 64-byte Address Space 112
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Figure 18.2: A 64-Byte Address Space In A 128-Byte Physical Memory
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Address Translation

* OS maintains a page table per-process.
— For example, VPage 0 -> PPage 3

* To translate, we split the virtual address into virtual page number
(VPN) and offset.

* The VPN translates to a physical frame number (PFN).
VPN offset

Va5|Va4 | Va3 |Va2|Val|Va0
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Address Translation
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Figure 18.4: Example: Page Table in Kernel Physical Memory
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Figure 18.3: The Address Translation Process
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Where Are Page Tables Stored?

* Page tables can get very large compared to base/bounds pairs.

* Imagine 32-bit address space with 4KB pages.
— 20-bit VPN + 12-bit offset
— That's 22% translations per process!

— If each entry was 4 bytes, that's 4MB per process needed for page tables.

* Thus, we don't store the page table in the MMU but somewhere in
physical memory.
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What's Actually In The Page Table?

* For now, we will use a simple linear page table.

* This is just an array where at index VPN, there is a page table entry (PTE)
that contains:
— The Physical Frame Number (PFN)
— Valid bit
— Protection bits (RWX)
— Present bit (It's in physical memory. More on this later.)
— Dirty bit (It has been modified.)
— Reference/Accessed bit (Is it being used?)
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Figure 18.5: An x86 Page Table Entry (PTE)
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Paging: Also Too Slow

» Suppose this simple instruction is run
— Movl 21, %eax

» Must translate VA 21 to a PA. Needs the page table for this.
» Suppose the hardware has a single page-table base register.

» With that, the hardware can basically do the following:
— VPN = (VirtualAddress & VPN_MASK) >> SHIFT
— PTEAddr = PageTableBaseRegister + (VPN * sizeof(PTE))
— offset = VirtualAddress & OFFSET_MASK
— PhysAddr = (PTEAddr->PFN << SHIFT) | offset

 This requires an extra memory access for every memory access!
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Paging: Also Too Slow
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// Extract the VPN from the wvirtual address
VPN = (VirtualAddress & VPN_MASK) >> SHIFT

// Form the address of the page-table entry (PTE)
PTEAddr = PTBR + (VPN * sizeof (PTE))

// Fetch the PTE
PTE = AccessMemory (PTEAddr)

// Check if process can access the page

if (PTE.Valid == False)
RaiseException (SEGMENTATION_FAULT)

else if (CanAccess (PTE.ProtectBits) == False)
RaiseException (PROTECTION_FAULT)

else
// Access is OK: form physical address and fetch it
offset = VirtualAddress & OFFSET_MASK
PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

Register = AccessMemory (PhysAddr)

Figure 18.6: Accessing Memory With Paging
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Paging: Also Too Slow

* Thus, we have two major issues we must resolve.
— Memory usage
— Extra memory references




Paging: Also Too Slow - Example

int array[1000];

for (i = 0; i < 1000; i++)
array[i] = 0;

1024 movl $0x0, (%edi, %eax, 4)
1028 incl %eax

1032 cmpl $0x03e8, %eax

1036 Jne O0Ox1024




Paging: Also Too Slow - Example

int array[1000];

for (i = 0; i < 1000; i++)

array[i] = 0;
» Per iteration of the loop: 1024 movl $0x0, (%edi, 3eax, 4)
— 4 instruction fetches N 1028 incl %seax
— 1 explicit memory update :-U32 ;mpl $0x03e8, $eax
— 5 page table accesses 1036 Jne 0x1024

— Totaling 10 memory accesses per
iteration!
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