Chapter 18: Paging Introduction

Adam Disney

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Crux: How To Virtualize Memory With Pages

THE CRUX:
How TO VIRTUALIZE MEMORY WITH PAGES
How can we virtualize memory with pages, so as to avoid the prob-
lems of segmentation? What are the basic techniques? How do we make
those techniques work well, with minimal space and time overheads?

Overview

* Instead of variable-sized segments, let's have fixed-sized pages.
* We divide the virtual address space into fixed-sized pages.
* We divide the physical address space into fixed-sized page frames.

 This approach is simple for free-space management because of fixed-
sized units.

— No assumptions about how the program will use address space.
— No external fragmentation

A Simple E le
I m p e xa m p e reserved for OS page frame 0 of physical memory
16
(unused) page frame 1
32
0 page 3 of AS page frame 2
(page 0 of the address space) 48
16 page 0 of AS page frame 3
(page 1) 64
32 (unused) page frame 4
(page 2) 80
48 (page 3) page 2 of AS page frame 5
64 9%
(unused) page frame 6
Figure 18.1: A Simple 64-byte Address Space 112
page 1 of AS page frame 7
128

Figure 18.2: A 64-Byte Address Space In A 128-Byte Physical Memory

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Address Translation

* OS maintains a page table per-process.
— For example, VPage 0 -> PPage 3

* To translate, we split the virtual address into virtual page number
(VPN) and offset.

* The VPN translates to a physical frame number (PFN).
VPN offset

Va5|Va4 | Va3 |Va2|Val|Va0

TENNESSEE @ §

KNOXVILLE

Address Translation

0

16

32

48

64

80

96

112

128

Figure 18.4: Example: Page Table in Kernel Physical Memory

page table:
S

(unused)

page 3 of AS

page 0 of AS

(unused)

page 2 of AS

(unused)

page 1 of AS

page frame 0 of physical memory

page frame 1

page frame 2

page frame 3

page frame 4

page frame 5

page frame 6

page frame 7

VPN offset

Virtual
Address 0 1 0 1 0 1
Address
Translation
J’ l l Y Y Y Y
Physical
Address 1 1 1 0| 1 0| 1
PFN offset

Figure 18.3: The Address Translation Process

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Where Are Page Tables Stored?

* Page tables can get very large compared to base/bounds pairs.

* Imagine 32-bit address space with 4KB pages.
— 20-bit VPN + 12-bit offset
— That's 22% translations per process!

— If each entry was 4 bytes, that's 4MB per process needed for page tables.

* Thus, we don't store the page table in the MMU but somewhere in
physical memory.

TENNESSEE @ §

KNOXVILLE

What's Actually In The Page Table?

* For now, we will use a simple linear page table.

* This is just an array where at index VPN, there is a page table entry (PTE)
that contains:
— The Physical Frame Number (PFN)
— Valid bit
— Protection bits (RWX)
— Present bit (It's in physical memory. More on this later.)
— Dirty bit (It has been modified.)
— Reference/Accessed bit (Is it being used?)

31 3029 28 27 262524232221 20191817 16151413 121110 9 8 7 6 5 4 3 2 1 0O
= -] WE

< |0 = o
PEN o|g ““EE:‘::

Figure 18.5: An x86 Page Table Entry (PTE)

TENNESSEE @ §

KNOXVILLE

Paging: Also Too Slow

» Suppose this simple instruction is run
— Movl 21, %eax

» Must translate VA 21 to a PA. Needs the page table for this.
» Suppose the hardware has a single page-table base register.

» With that, the hardware can basically do the following:
— VPN = (VirtualAddress & VPN_MASK) >> SHIFT
— PTEAddr = PageTableBaseRegister + (VPN * sizeof(PTE))
— offset = VirtualAddress & OFFSET_MASK
— PhysAddr = (PTEAddr->PFN << SHIFT) | offset

 This requires an extra memory access for every memory access!

TENNESSEE @ §

KNOXVILLE

Paging: Also Too Slow

=R = T~ DU ¥ | I — N F~ R o]

T T T R = |
=T = - = T | . T = R R = |

// Extract the VPN from the wvirtual address
VPN = (VirtualAddress & VPN_MASK) >> SHIFT

// Form the address of the page-table entry (PTE)
PTEAddr = PTBR + (VPN * sizeof (PTE))

// Fetch the PTE
PTE = AccessMemory (PTEAddr)

// Check if process can access the page

if (PTE.Valid == False)
RaiseException (SEGMENTATION_FAULT)

else if (CanAccess (PTE.ProtectBits) == False)
RaiseException (PROTECTION_FAULT)

else
// Access is OK: form physical address and fetch it
offset = VirtualAddress & OFFSET_MASK
PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

Register = AccessMemory (PhysAddr)

Figure 18.6: Accessing Memory With Paging

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Paging: Also Too Slow

* Thus, we have two major issues we must resolve.
— Memory usage
— Extra memory references

Paging: Also Too Slow - Example

int array[1000];

for (i = 0; i < 1000; i++)
array[i] = 0;

1024 movl $0x0, (%edi, %eax, 4)
1028 incl %eax

1032 cmpl $0x03e8, %eax

1036 Jne O0Ox1024

Paging: Also Too Slow - Example

int array[1000];

for (i = 0; i < 1000; i++)

array[i] = 0;
» Per iteration of the loop: 1024 movl $0x0, (%edi, 3eax, 4)
— 4 instruction fetches N 1028 incl %seax
— 1 explicit memory update :-U32 ;mpl $0x03e8, $eax
— 5 page table accesses 1036 Jne 0x1024

— Totaling 10 memory accesses per
iteration!

	Cover/Divider
	Slide 1: Chapter 18: Paging Introduction

	Content Layouts
	Slide 2: Crux: How To Virtualize Memory With Pages
	Slide 3: Overview
	Slide 4: A Simple Example
	Slide 5: Address Translation
	Slide 6: Address Translation
	Slide 7: Where Are Page Tables Stored?
	Slide 8: What's Actually In The Page Table?
	Slide 9: Paging: Also Too Slow
	Slide 10: Paging: Also Too Slow
	Slide 11: Paging: Also Too Slow
	Slide 12: Paging: Also Too Slow - Example
	Slide 13: Paging: Also Too Slow - Example

