
Chapter 18: Paging Introduction
Adam Disney



Crux: How To Virtualize Memory With Pages



Overview

• Instead of variable-sized segments, let's have fixed-sized pages.

• We divide the virtual address space into fixed-sized pages.

• We divide the physical address space into fixed-sized page frames.

• This approach is simple for free-space management because of fixed-
sized units.
— No assumptions about how the program will use address space.

— No external fragmentation



A Simple Example



Address Translation

• OS maintains a page table per-process.
— For example, VPage 0 -> PPage 3

• To translate, we split the virtual address into virtual page number 
(VPN) and offset.

• The VPN translates to a physical frame number (PFN).



Address Translation



Where Are Page Tables Stored?

• Page tables can get very large compared to base/bounds pairs.

• Imagine 32-bit address space with 4KB pages.
— 20-bit VPN + 12-bit offset

— That's 220 translations per process!

— If each entry was 4 bytes, that's 4MB per process needed for page tables.

• Thus, we don't store the page table in the MMU but somewhere in 
physical memory.



What's Actually In The Page Table?

• For now, we will use a simple linear page table.

• This is just an array where at index VPN, there is a page table entry (PTE) 
that contains:
— The Physical Frame Number (PFN)
— Valid bit
— Protection bits (RWX)
— Present bit (It's in physical memory. More on this later.)
— Dirty bit (It has been modified.)
— Reference/Accessed bit (Is it being used?)



Paging: Also Too Slow

• Suppose this simple instruction is run
— Movl 21, %eax

• Must translate VA 21 to a PA. Needs the page table for this.

• Suppose the hardware has a single page-table base register.

• With that, the hardware can basically do the following:
— VPN = (VirtualAddress & VPN_MASK) >> SHIFT
— PTEAddr = PageTableBaseRegister + (VPN * sizeof(PTE))

— offset = VirtualAddress & OFFSET_MASK
— PhysAddr = (PTEAddr->PFN << SHIFT) | offset

• This requires an extra memory access for every memory access!



Paging: Also Too Slow



Paging: Also Too Slow

• Thus, we have two major issues we must resolve.
— Memory usage

— Extra memory references



Paging: Also Too Slow - Example



Paging: Also Too Slow - Example

• Per iteration of the loop:
— 4 instruction fetches

— 1 explicit memory update

— 5 page table accesses

— Totaling 10 memory accesses per 
iteration!


	Cover/Divider
	Slide 1: Chapter 18: Paging Introduction

	Content Layouts
	Slide 2: Crux: How To Virtualize Memory With Pages
	Slide 3: Overview
	Slide 4: A Simple Example
	Slide 5: Address Translation
	Slide 6: Address Translation
	Slide 7: Where Are Page Tables Stored?
	Slide 8: What's Actually In The Page Table?
	Slide 9: Paging: Also Too Slow
	Slide 10: Paging: Also Too Slow
	Slide 11: Paging: Also Too Slow
	Slide 12: Paging: Also Too Slow - Example
	Slide 13: Paging: Also Too Slow - Example


